A Contraction Theory Approach to Singularly Perturbed Systems with Application to Retroactivity Attenuation

In this paper, we revisit standard results for singularly perturbed systems on the infinite time interval by employing tools from nonlinear contraction theory. This allows us to determine explicit bounds both on the rate of convergence of trajectories to the slow manifold, and on the distance betwee...

Full description

Bibliographic Details
Main Authors: Del Vecchio, Domitilla, Slotine, Jean-Jacques E.
Other Authors: Massachusetts Institute of Technology. Department of Mechanical Engineering
Format: Article
Language:en_US
Published: Institute of Electrical and Electronics Engineers (IEEE) 2013
Online Access:http://hdl.handle.net/1721.1/79864
https://orcid.org/0000-0001-6472-8576
https://orcid.org/0000-0002-7161-7812
Description
Summary:In this paper, we revisit standard results for singularly perturbed systems on the infinite time interval by employing tools from nonlinear contraction theory. This allows us to determine explicit bounds both on the rate of convergence of trajectories to the slow manifold, and on the distance between these trajectories and those of the reduced system. We illustrate the application of the proposed technique to the problem of retroactivity attenuation in biomolecular systems, that is, to the problem of attenuating the effects of output loading due to interconnection to downstream systems. By virtue of the explicit bounds, we can single out the key biochemical parameters to tune in order to enhance retroactivity attenuation. This provides design guidelines for synthetic biology devices that are robust to loading and can function as insulation devices just like insulating amplifiers work in electronics.