Zeroth Poisson homology of symmetric powers of isolated quasihomogeneous surface singularities

Original manuscript July 10 2009

Bibliographic Details
Main Authors: Schedler, Travis, Etingof, Pavel I.
Other Authors: Massachusetts Institute of Technology. Department of Mathematics
Format: Article
Language:en_US
Published: Walter de Gruyter 2013
Online Access:http://hdl.handle.net/1721.1/79893
https://orcid.org/0000-0002-0710-1416
_version_ 1811097706267934720
author Schedler, Travis
Etingof, Pavel I.
author2 Massachusetts Institute of Technology. Department of Mathematics
author_facet Massachusetts Institute of Technology. Department of Mathematics
Schedler, Travis
Etingof, Pavel I.
author_sort Schedler, Travis
collection MIT
description Original manuscript July 10 2009
first_indexed 2024-09-23T17:03:37Z
format Article
id mit-1721.1/79893
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T17:03:37Z
publishDate 2013
publisher Walter de Gruyter
record_format dspace
spelling mit-1721.1/798932022-10-03T10:06:05Z Zeroth Poisson homology of symmetric powers of isolated quasihomogeneous surface singularities Schedler, Travis Etingof, Pavel I. Massachusetts Institute of Technology. Department of Mathematics Etingof, Pavel I. Schedler, Travis Original manuscript July 10 2009 Let X ⊂ ℂ[superscript 3] be a surface with an isolated singularity at the origin, given by the equation Q(x, y, z) = 0, where Q is a weighted-homogeneous polynomial. In particular, this includes the Kleinian surfaces X =  ℂ[superscipt 2]/G for G < SL[subscript 2](ℂ) finite. Let Y ≔  S[superscript n]X be the n-th symmetric power of X. We compute the zeroth Poisson homology HP[subscript 0](𝒪[subscript Y]), as a graded vector space with respect to the weight grading, where 𝒪[subscript Y] is the ring of polynomial functions on Y. In the Kleinian case, this confirms a conjecture of Alev, that HP[subscript 0] (𝒪 [G [superscipt n]⋊ S[subscript n]over ℂ[2n]) ≃ HH [subscript 0] (Weyl (𝒪 [G [superscipt n]⋊ S[subscript n]over ℂ[2n]), where Weyl[subscript 2n] is the Weyl algebra on 2n generators. That is, the Brylinski spectral sequence degenerates in degree zero in this case. In the elliptic case, this yields the zeroth Hochschild homology of symmetric powers of the elliptic algebras with three generators modulo their center, A[subscript γ], for all but countably many parameters γ in the elliptic curve. As a consequence, we deduce a bound on the number of irreducible finite-dimensional representations of all quantizations of Y. This includes the noncommutative spherical symplectic reflection algebras associated to G[superscript n] ⋊ S[subscript n]. National Science Foundation (U.S.) (Grant DMS-0504847) American Institute of Mathematics (Fellowship) Massachusetts Institute of Technology. Undergraduate Research Opportunities Program 2013-08-21T15:55:23Z 2013-08-21T15:55:23Z 2012-06 2010-02 Article http://purl.org/eprint/type/JournalArticle 1435-5345 0075-4102 http://hdl.handle.net/1721.1/79893 Etingof, Pavel, and Travis Schedler. “Zeroth Poisson homology of symmetric powers of isolated quasihomogeneous surface singularities.” Journal für die reine und angewandte Mathematik (Crelles Journal) 2012, no. 667 (January 2012). https://orcid.org/0000-0002-0710-1416 en_US http://dx.doi.org/10.1515/crelle.2011.124 Journal fur die reine und angewandte Mathematik (Crelles Journal) Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/ application/pdf Walter de Gruyter arXiv
spellingShingle Schedler, Travis
Etingof, Pavel I.
Zeroth Poisson homology of symmetric powers of isolated quasihomogeneous surface singularities
title Zeroth Poisson homology of symmetric powers of isolated quasihomogeneous surface singularities
title_full Zeroth Poisson homology of symmetric powers of isolated quasihomogeneous surface singularities
title_fullStr Zeroth Poisson homology of symmetric powers of isolated quasihomogeneous surface singularities
title_full_unstemmed Zeroth Poisson homology of symmetric powers of isolated quasihomogeneous surface singularities
title_short Zeroth Poisson homology of symmetric powers of isolated quasihomogeneous surface singularities
title_sort zeroth poisson homology of symmetric powers of isolated quasihomogeneous surface singularities
url http://hdl.handle.net/1721.1/79893
https://orcid.org/0000-0002-0710-1416
work_keys_str_mv AT schedlertravis zerothpoissonhomologyofsymmetricpowersofisolatedquasihomogeneoussurfacesingularities
AT etingofpaveli zerothpoissonhomologyofsymmetricpowersofisolatedquasihomogeneoussurfacesingularities