Design of an efficient terahertz source using triply resonant nonlinear photonic crystal cavities
We propose a scheme for efficient cavity-enhanced nonlinear THz generation via difference-frequency generation (DFG) processes using a triply resonant system based on photonic crystal cavities. We show that high nonlinear overlap can be achieved by coupling a THz cavity to a doubly-resonant, dual-po...
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Optical Society of America
2013
|
Online Access: | http://hdl.handle.net/1721.1/80307 https://orcid.org/0000-0001-7327-4967 |
Summary: | We propose a scheme for efficient cavity-enhanced nonlinear THz generation via difference-frequency generation (DFG) processes using a triply resonant system based on photonic crystal cavities. We show that high nonlinear overlap can be achieved by coupling a THz cavity to a doubly-resonant, dual-polarization near-infrared (e.g. telecom band) photonic-crystal nanobeam cavity, allowing the mixing of three mutually orthogonal fundamental cavity modes through a χ[super script (2)] nonlinearity. We demonstrate through coupled-mode theory that complete depletion of the pump frequency — i.e., quantum-limited conversion — is possible. We show that the output power at the point of optimal total conversion efficiency is adjustable by varying the mode quality (Q) factors. |
---|