Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements
We use an ensemble Kalman filter (EnKF), together with the GEOS-Chem chemistry transport model, to estimate regional monthly methane (CH[subscript 4]) fluxes for the period June 2009–December 2010 using proxy dry-air column-averaged mole fractions of methane (XCH[subscript 4]) from GOSAT (Greenhouse...
Main Authors: | , , , , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Copernicus GmbH
2013
|
Online Access: | http://hdl.handle.net/1721.1/80325 https://orcid.org/0000-0001-5925-3801 |
Summary: | We use an ensemble Kalman filter (EnKF), together with the GEOS-Chem chemistry transport model, to estimate regional monthly methane (CH[subscript 4]) fluxes for the period June 2009–December 2010 using proxy dry-air column-averaged mole fractions of methane (XCH[subscript 4]) from GOSAT (Greenhouse gases Observing SATellite) and/or NOAA ESRL (Earth System Research Laboratory) and CSIRO GASLAB (Global Atmospheric Sampling Laboratory) CH[subscript 4] surface mole fraction measurements. Global posterior estimates using GOSAT and/or surface measurements are between 510–516 Tg yr[superscript −1], which is less than, though within the uncertainty of, the prior global flux of 529 ± 25 Tg yr[superscript −1]. We find larger differences between regional prior and posterior fluxes, with the largest changes in monthly emissions (75 Tg yr[superscript −1]) occurring in Temperate Eurasia. In non-boreal regions the error reductions for inversions using the GOSAT data are at least three times larger (up to 45%) than if only surface data are assimilated, a reflection of the greater spatial coverage of GOSAT, with the two exceptions of latitudes >60° associated with a data filter and over Europe where the surface network adequately describes fluxes on our model spatial and temporal grid. We use CarbonTracker and GEOS-Chem XCO[subscript 2] model output to investigate model error on quantifying proxy GOSAT XCH[subscript 4] (involving model XCO[subscript 2]) and inferring methane flux estimates from surface mole fraction data and show similar resulting fluxes, with differences reflecting initial differences in the proxy value. Using a series of observing system simulation experiments (OSSEs) we characterize the posterior flux error introduced by non-uniform atmospheric sampling by GOSAT. We show that clear-sky measurements can theoretically reproduce fluxes within 10% of true values, with the exception of tropical regions where, due to a large seasonal cycle in the number of measurements because of clouds and aerosols, fluxes are within 15% of true fluxes. We evaluate our posterior methane fluxes by incorporating them into GEOS-Chem and sampling the model at the location and time of surface CH[subscript 4] measurements from the AGAGE (Advanced Global Atmospheric Gases Experiment) network and column XCH[subscript 4] measurements from TCCON (Total Carbon Column Observing Network). The posterior fluxes modestly improve the model agreement with AGAGE and TCCON data relative to prior fluxes, with the correlation coefficients (r[superscript 2]) increasing by a mean of 0.04 (range: −0.17 to 0.23) and the biases decreasing by a mean of 0.4 ppb (range: −8.9 to 8.4 ppb). |
---|