Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements

We use an ensemble Kalman filter (EnKF), together with the GEOS-Chem chemistry transport model, to estimate regional monthly methane (CH[subscript 4]) fluxes for the period June 2009–December 2010 using proxy dry-air column-averaged mole fractions of methane (XCH[subscript 4]) from GOSAT (Greenhouse...

Full description

Bibliographic Details
Main Authors: Fraser, A., Palmer, Paul I., Feng, L., Boesch, H., Cogan, A., Parker, R., Dlugokencky, E., Fraser, P. J., Krummel, P. B., Langenfelds, R. L., O'Doherty, Simon, Steele, L. P., van der Schoot, M., Weiss, R. F., Prinn, Ronald G.
Other Authors: Massachusetts Institute of Technology. Center for Global Change Science
Format: Article
Language:en_US
Published: Copernicus GmbH 2013
Online Access:http://hdl.handle.net/1721.1/80325
https://orcid.org/0000-0001-5925-3801
_version_ 1811086575626354688
author Fraser, A.
Palmer, Paul I.
Feng, L.
Boesch, H.
Cogan, A.
Parker, R.
Dlugokencky, E.
Fraser, P. J.
Krummel, P. B.
Langenfelds, R. L.
O'Doherty, Simon
Steele, L. P.
van der Schoot, M.
Weiss, R. F.
Prinn, Ronald G.
author2 Massachusetts Institute of Technology. Center for Global Change Science
author_facet Massachusetts Institute of Technology. Center for Global Change Science
Fraser, A.
Palmer, Paul I.
Feng, L.
Boesch, H.
Cogan, A.
Parker, R.
Dlugokencky, E.
Fraser, P. J.
Krummel, P. B.
Langenfelds, R. L.
O'Doherty, Simon
Steele, L. P.
van der Schoot, M.
Weiss, R. F.
Prinn, Ronald G.
author_sort Fraser, A.
collection MIT
description We use an ensemble Kalman filter (EnKF), together with the GEOS-Chem chemistry transport model, to estimate regional monthly methane (CH[subscript 4]) fluxes for the period June 2009–December 2010 using proxy dry-air column-averaged mole fractions of methane (XCH[subscript 4]) from GOSAT (Greenhouse gases Observing SATellite) and/or NOAA ESRL (Earth System Research Laboratory) and CSIRO GASLAB (Global Atmospheric Sampling Laboratory) CH[subscript 4] surface mole fraction measurements. Global posterior estimates using GOSAT and/or surface measurements are between 510–516 Tg yr[superscript −1], which is less than, though within the uncertainty of, the prior global flux of 529 ± 25 Tg yr[superscript −1]. We find larger differences between regional prior and posterior fluxes, with the largest changes in monthly emissions (75 Tg yr[superscript −1]) occurring in Temperate Eurasia. In non-boreal regions the error reductions for inversions using the GOSAT data are at least three times larger (up to 45%) than if only surface data are assimilated, a reflection of the greater spatial coverage of GOSAT, with the two exceptions of latitudes >60° associated with a data filter and over Europe where the surface network adequately describes fluxes on our model spatial and temporal grid. We use CarbonTracker and GEOS-Chem XCO[subscript 2] model output to investigate model error on quantifying proxy GOSAT XCH[subscript 4] (involving model XCO[subscript 2]) and inferring methane flux estimates from surface mole fraction data and show similar resulting fluxes, with differences reflecting initial differences in the proxy value. Using a series of observing system simulation experiments (OSSEs) we characterize the posterior flux error introduced by non-uniform atmospheric sampling by GOSAT. We show that clear-sky measurements can theoretically reproduce fluxes within 10% of true values, with the exception of tropical regions where, due to a large seasonal cycle in the number of measurements because of clouds and aerosols, fluxes are within 15% of true fluxes. We evaluate our posterior methane fluxes by incorporating them into GEOS-Chem and sampling the model at the location and time of surface CH[subscript 4] measurements from the AGAGE (Advanced Global Atmospheric Gases Experiment) network and column XCH[subscript 4] measurements from TCCON (Total Carbon Column Observing Network). The posterior fluxes modestly improve the model agreement with AGAGE and TCCON data relative to prior fluxes, with the correlation coefficients (r[superscript 2]) increasing by a mean of 0.04 (range: −0.17 to 0.23) and the biases decreasing by a mean of 0.4 ppb (range: −8.9 to 8.4 ppb).
first_indexed 2024-09-23T13:28:09Z
format Article
id mit-1721.1/80325
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T13:28:09Z
publishDate 2013
publisher Copernicus GmbH
record_format dspace
spelling mit-1721.1/803252022-09-28T14:28:49Z Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements Fraser, A. Palmer, Paul I. Feng, L. Boesch, H. Cogan, A. Parker, R. Dlugokencky, E. Fraser, P. J. Krummel, P. B. Langenfelds, R. L. O'Doherty, Simon Steele, L. P. van der Schoot, M. Weiss, R. F. Prinn, Ronald G. Massachusetts Institute of Technology. Center for Global Change Science Prinn, Ronald G. We use an ensemble Kalman filter (EnKF), together with the GEOS-Chem chemistry transport model, to estimate regional monthly methane (CH[subscript 4]) fluxes for the period June 2009–December 2010 using proxy dry-air column-averaged mole fractions of methane (XCH[subscript 4]) from GOSAT (Greenhouse gases Observing SATellite) and/or NOAA ESRL (Earth System Research Laboratory) and CSIRO GASLAB (Global Atmospheric Sampling Laboratory) CH[subscript 4] surface mole fraction measurements. Global posterior estimates using GOSAT and/or surface measurements are between 510–516 Tg yr[superscript −1], which is less than, though within the uncertainty of, the prior global flux of 529 ± 25 Tg yr[superscript −1]. We find larger differences between regional prior and posterior fluxes, with the largest changes in monthly emissions (75 Tg yr[superscript −1]) occurring in Temperate Eurasia. In non-boreal regions the error reductions for inversions using the GOSAT data are at least three times larger (up to 45%) than if only surface data are assimilated, a reflection of the greater spatial coverage of GOSAT, with the two exceptions of latitudes >60° associated with a data filter and over Europe where the surface network adequately describes fluxes on our model spatial and temporal grid. We use CarbonTracker and GEOS-Chem XCO[subscript 2] model output to investigate model error on quantifying proxy GOSAT XCH[subscript 4] (involving model XCO[subscript 2]) and inferring methane flux estimates from surface mole fraction data and show similar resulting fluxes, with differences reflecting initial differences in the proxy value. Using a series of observing system simulation experiments (OSSEs) we characterize the posterior flux error introduced by non-uniform atmospheric sampling by GOSAT. We show that clear-sky measurements can theoretically reproduce fluxes within 10% of true values, with the exception of tropical regions where, due to a large seasonal cycle in the number of measurements because of clouds and aerosols, fluxes are within 15% of true fluxes. We evaluate our posterior methane fluxes by incorporating them into GEOS-Chem and sampling the model at the location and time of surface CH[subscript 4] measurements from the AGAGE (Advanced Global Atmospheric Gases Experiment) network and column XCH[subscript 4] measurements from TCCON (Total Carbon Column Observing Network). The posterior fluxes modestly improve the model agreement with AGAGE and TCCON data relative to prior fluxes, with the correlation coefficients (r[superscript 2]) increasing by a mean of 0.04 (range: −0.17 to 0.23) and the biases decreasing by a mean of 0.4 ppb (range: −8.9 to 8.4 ppb). NASA Upper Atmospheric Research Program 2013-08-30T14:40:09Z 2013-08-30T14:40:09Z 2013-06 2013-04 Article http://purl.org/eprint/type/JournalArticle 1680-7324 1680-7316 http://hdl.handle.net/1721.1/80325 Fraser, A., P. I. Palmer, L. Feng, H. Boesch, A. Cogan, R. Parker, E. J. Dlugokencky, et al. “Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements.” Atmospheric Chemistry and Physics 13, no. 11 (June 13, 2013): 5697-5713. https://orcid.org/0000-0001-5925-3801 en_US http://dx.doi.org/10.5194/acp-13-5697-2013 Atmospheric Chemistry and Physics Creative Commons Attribution 3.0 http://creativecommons.org/licenses/by/3.0/ application/pdf Copernicus GmbH Copernicus
spellingShingle Fraser, A.
Palmer, Paul I.
Feng, L.
Boesch, H.
Cogan, A.
Parker, R.
Dlugokencky, E.
Fraser, P. J.
Krummel, P. B.
Langenfelds, R. L.
O'Doherty, Simon
Steele, L. P.
van der Schoot, M.
Weiss, R. F.
Prinn, Ronald G.
Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements
title Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements
title_full Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements
title_fullStr Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements
title_full_unstemmed Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements
title_short Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements
title_sort estimating regional methane surface fluxes the relative importance of surface and gosat mole fraction measurements
url http://hdl.handle.net/1721.1/80325
https://orcid.org/0000-0001-5925-3801
work_keys_str_mv AT frasera estimatingregionalmethanesurfacefluxestherelativeimportanceofsurfaceandgosatmolefractionmeasurements
AT palmerpauli estimatingregionalmethanesurfacefluxestherelativeimportanceofsurfaceandgosatmolefractionmeasurements
AT fengl estimatingregionalmethanesurfacefluxestherelativeimportanceofsurfaceandgosatmolefractionmeasurements
AT boeschh estimatingregionalmethanesurfacefluxestherelativeimportanceofsurfaceandgosatmolefractionmeasurements
AT cogana estimatingregionalmethanesurfacefluxestherelativeimportanceofsurfaceandgosatmolefractionmeasurements
AT parkerr estimatingregionalmethanesurfacefluxestherelativeimportanceofsurfaceandgosatmolefractionmeasurements
AT dlugokenckye estimatingregionalmethanesurfacefluxestherelativeimportanceofsurfaceandgosatmolefractionmeasurements
AT fraserpj estimatingregionalmethanesurfacefluxestherelativeimportanceofsurfaceandgosatmolefractionmeasurements
AT krummelpb estimatingregionalmethanesurfacefluxestherelativeimportanceofsurfaceandgosatmolefractionmeasurements
AT langenfeldsrl estimatingregionalmethanesurfacefluxestherelativeimportanceofsurfaceandgosatmolefractionmeasurements
AT odohertysimon estimatingregionalmethanesurfacefluxestherelativeimportanceofsurfaceandgosatmolefractionmeasurements
AT steelelp estimatingregionalmethanesurfacefluxestherelativeimportanceofsurfaceandgosatmolefractionmeasurements
AT vanderschootm estimatingregionalmethanesurfacefluxestherelativeimportanceofsurfaceandgosatmolefractionmeasurements
AT weissrf estimatingregionalmethanesurfacefluxestherelativeimportanceofsurfaceandgosatmolefractionmeasurements
AT prinnronaldg estimatingregionalmethanesurfacefluxestherelativeimportanceofsurfaceandgosatmolefractionmeasurements