Summary: | Colloidal suspensions exhibit shear thinning and shear thickening. The most common interpretation of these phenomena identifies layering of the fluid perpendicular to the shear gradient as the driver for the observed behavior. However, studies of the particle configurations associated with shear thinning and thickening cast doubt on that conclusion and leave unsettled whether these nonequilibrium phenomena are caused primarily by correlated particle motions or by changes in particle packing structure. We report the results of Stokesian dynamics simulations of suspensions of hard spheres that illuminate the relation among the suspension viscosity, shear rate, and particle configuration. Using a recently introduced sampling technique for nonequilibrium systems, we show that shear thinning can be decoupled from layering, thereby eliminating layering as the driver for shear thinning. In contrast, we find that there is a strong correlation between shear thinning and a two-particle measure of the shear stress. Our results are consistent with a recent experimental study.
|