Transitions between discrete and rhythmic primitives in a unimanual task
Given the vast complexity of human actions and interactions with objects, we proposed that control of sensorimotor behavior may utilize dynamic primitives. However, greater computational simplicity may come at the cost of reduced versatility. Evidence for primitives may be garnered by revealing such...
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Frontiers Research Foundation
2013
|
Online Access: | http://hdl.handle.net/1721.1/80784 https://orcid.org/0000-0001-5366-2145 |
_version_ | 1826215096908513280 |
---|---|
author | Sternad, Dagmar Marino, Hamal Charles, Steven K. Duarte, Marcos Dipietro, Laura Hogan, Neville |
author2 | Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences |
author_facet | Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences Sternad, Dagmar Marino, Hamal Charles, Steven K. Duarte, Marcos Dipietro, Laura Hogan, Neville |
author_sort | Sternad, Dagmar |
collection | MIT |
description | Given the vast complexity of human actions and interactions with objects, we proposed that control of sensorimotor behavior may utilize dynamic primitives. However, greater computational simplicity may come at the cost of reduced versatility. Evidence for primitives may be garnered by revealing such limitations. This study tested subjects performing a sequence of progressively faster discrete movements in order to “stress” the system. We hypothesized that the increasing pace would elicit a transition to rhythmic movements, assumed to be computationally and neurally more efficient. Abrupt transitions between the two types of movements would support the hypothesis that rhythmic and discrete movements are distinct primitives. Ten subjects performed planar point-to-point arm movements paced by a metronome: starting at 2 s, the metronome intervals decreased by 36 ms per cycle to 200 ms, stayed at 200 ms for several cycles, then increased by similar increments. Instructions emphasized to insert explicit stops between each movement with a duration that equaled the movement time. The experiment was performed with eyes open and closed, and with short and long metronome sounds, the latter explicitly specifying the dwell duration. Results showed that subjects matched instructed movement times but did not preserve the dwell times. Rather, they progressively reduced dwell time to zero, transitioning to continuous rhythmic movements before movement times reached their minimum. The acceleration profiles showed an abrupt change between discrete and rhythmic profiles. The loss of dwell time occurred earlier with long auditory specification, when subjects also showed evidence of predictive control. While evidence for hysteresis was weak, taken together, the results clearly indicated a transition between discrete and rhythmic movements, supporting the proposal that representation is based on primitives rather than on veridical internal models. |
first_indexed | 2024-09-23T16:16:30Z |
format | Article |
id | mit-1721.1/80784 |
institution | Massachusetts Institute of Technology |
language | en_US |
last_indexed | 2024-09-23T16:16:30Z |
publishDate | 2013 |
publisher | Frontiers Research Foundation |
record_format | dspace |
spelling | mit-1721.1/807842022-09-29T19:17:29Z Transitions between discrete and rhythmic primitives in a unimanual task Sternad, Dagmar Marino, Hamal Charles, Steven K. Duarte, Marcos Dipietro, Laura Hogan, Neville Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences Massachusetts Institute of Technology. Department of Mechanical Engineering Dipietro, Laura Hogan, Neville Sternad, Dagmar Given the vast complexity of human actions and interactions with objects, we proposed that control of sensorimotor behavior may utilize dynamic primitives. However, greater computational simplicity may come at the cost of reduced versatility. Evidence for primitives may be garnered by revealing such limitations. This study tested subjects performing a sequence of progressively faster discrete movements in order to “stress” the system. We hypothesized that the increasing pace would elicit a transition to rhythmic movements, assumed to be computationally and neurally more efficient. Abrupt transitions between the two types of movements would support the hypothesis that rhythmic and discrete movements are distinct primitives. Ten subjects performed planar point-to-point arm movements paced by a metronome: starting at 2 s, the metronome intervals decreased by 36 ms per cycle to 200 ms, stayed at 200 ms for several cycles, then increased by similar increments. Instructions emphasized to insert explicit stops between each movement with a duration that equaled the movement time. The experiment was performed with eyes open and closed, and with short and long metronome sounds, the latter explicitly specifying the dwell duration. Results showed that subjects matched instructed movement times but did not preserve the dwell times. Rather, they progressively reduced dwell time to zero, transitioning to continuous rhythmic movements before movement times reached their minimum. The acceleration profiles showed an abrupt change between discrete and rhythmic profiles. The loss of dwell time occurred earlier with long auditory specification, when subjects also showed evidence of predictive control. While evidence for hysteresis was weak, taken together, the results clearly indicated a transition between discrete and rhythmic movements, supporting the proposal that representation is based on primitives rather than on veridical internal models. National Institutes of Health (U.S.) (R01-HD045639) American Heart Association (11SDG7270001) National Science Foundation (U.S.) (DMS-0928587) Eric P. and Evelyn E. Newman Fund United States. Defense Advanced Research Projects Agency (Warrior Web program BAA-11-72) 2013-09-18T13:31:37Z 2013-09-18T13:31:37Z 2013-07 2013-03 Article http://purl.org/eprint/type/JournalArticle 1662-5188 http://hdl.handle.net/1721.1/80784 Sternad, Dagmar, Hamal Marino, Steven K. Charles, Marcos Duarte, Laura Dipietro, and Neville Hogan. “Transitions between discrete and rhythmic primitives in a unimanual task.” Frontiers in Computational Neuroscience 7 (2013). https://orcid.org/0000-0001-5366-2145 en_US http://dx.doi.org/10.3389/fncom.2013.00090 Frontiers in Computational Neuroscience Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. application/pdf Frontiers Research Foundation Frontiers Research Foundation |
spellingShingle | Sternad, Dagmar Marino, Hamal Charles, Steven K. Duarte, Marcos Dipietro, Laura Hogan, Neville Transitions between discrete and rhythmic primitives in a unimanual task |
title | Transitions between discrete and rhythmic primitives in a unimanual task |
title_full | Transitions between discrete and rhythmic primitives in a unimanual task |
title_fullStr | Transitions between discrete and rhythmic primitives in a unimanual task |
title_full_unstemmed | Transitions between discrete and rhythmic primitives in a unimanual task |
title_short | Transitions between discrete and rhythmic primitives in a unimanual task |
title_sort | transitions between discrete and rhythmic primitives in a unimanual task |
url | http://hdl.handle.net/1721.1/80784 https://orcid.org/0000-0001-5366-2145 |
work_keys_str_mv | AT sternaddagmar transitionsbetweendiscreteandrhythmicprimitivesinaunimanualtask AT marinohamal transitionsbetweendiscreteandrhythmicprimitivesinaunimanualtask AT charlesstevenk transitionsbetweendiscreteandrhythmicprimitivesinaunimanualtask AT duartemarcos transitionsbetweendiscreteandrhythmicprimitivesinaunimanualtask AT dipietrolaura transitionsbetweendiscreteandrhythmicprimitivesinaunimanualtask AT hoganneville transitionsbetweendiscreteandrhythmicprimitivesinaunimanualtask |