On the global well-posedness of energy-critical Schrodinger equations in curved spaces

Original manuscript September 8, 2010

Bibliographic Details
Main Authors: Ionescu, Alexandru, Pausader, Benoit, Staffilani, Gigliola
Other Authors: Massachusetts Institute of Technology. Department of Mathematics
Format: Article
Language:en_US
Published: Mathematical Sciences Publishers 2013
Online Access:http://hdl.handle.net/1721.1/80820
https://orcid.org/0000-0002-8220-4466
_version_ 1811078313788047360
author Ionescu, Alexandru
Pausader, Benoit
Staffilani, Gigliola
author2 Massachusetts Institute of Technology. Department of Mathematics
author_facet Massachusetts Institute of Technology. Department of Mathematics
Ionescu, Alexandru
Pausader, Benoit
Staffilani, Gigliola
author_sort Ionescu, Alexandru
collection MIT
description Original manuscript September 8, 2010
first_indexed 2024-09-23T10:57:38Z
format Article
id mit-1721.1/80820
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T10:57:38Z
publishDate 2013
publisher Mathematical Sciences Publishers
record_format dspace
spelling mit-1721.1/808202022-10-01T00:13:08Z On the global well-posedness of energy-critical Schrodinger equations in curved spaces Ionescu, Alexandru Pausader, Benoit Staffilani, Gigliola Massachusetts Institute of Technology. Department of Mathematics Staffilani, Gigliola Original manuscript September 8, 2010 In this paper we present a method to study global regularity properties of solutions of large-data critical Schrodinger equations on certain noncompact Riemannian manifolds. We rely on concentration compactness arguments and a global Morawetz inequality adapted to the geometry of the manifold (in other words we adapt the method of Kenig and Merle to the variable coefficient case), and a good understanding of the corresponding Euclidean problem (a theorem of Colliander, Keel, Staffilani, Takaoka and Tao). As an application we prove global well-posedness and scattering in H[superscript 1] for the energy-critical defocusing initial-value problem (i∂t + Δ[subscript g])u = u|u|[superscript 4], u(0) = ϕ, on hyperbolic space ℍ[superscript 3]. National Science Foundation (U.S.) (Grant DMS 0602678) 2013-09-20T13:38:09Z 2013-09-20T13:38:09Z 2012-11 2010-08 Article http://purl.org/eprint/type/JournalArticle 1948-206X 2157-5045 http://hdl.handle.net/1721.1/80820 Ionescu, Alexandru, Benoit Pausader, and Gigliola Staffilani. “On the global well-posedness of energy-critical Schrödinger equations in curved spaces.” Analysis & PDE 5, no. 4 (November 27, 2012): 705-746. https://orcid.org/0000-0002-8220-4466 en_US http://dx.doi.org/10.2140/apde.2012.5.705 Analysis & PDE Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/ application/pdf Mathematical Sciences Publishers arXiv
spellingShingle Ionescu, Alexandru
Pausader, Benoit
Staffilani, Gigliola
On the global well-posedness of energy-critical Schrodinger equations in curved spaces
title On the global well-posedness of energy-critical Schrodinger equations in curved spaces
title_full On the global well-posedness of energy-critical Schrodinger equations in curved spaces
title_fullStr On the global well-posedness of energy-critical Schrodinger equations in curved spaces
title_full_unstemmed On the global well-posedness of energy-critical Schrodinger equations in curved spaces
title_short On the global well-posedness of energy-critical Schrodinger equations in curved spaces
title_sort on the global well posedness of energy critical schrodinger equations in curved spaces
url http://hdl.handle.net/1721.1/80820
https://orcid.org/0000-0002-8220-4466
work_keys_str_mv AT ionescualexandru ontheglobalwellposednessofenergycriticalschrodingerequationsincurvedspaces
AT pausaderbenoit ontheglobalwellposednessofenergycriticalschrodingerequationsincurvedspaces
AT staffilanigigliola ontheglobalwellposednessofenergycriticalschrodingerequationsincurvedspaces