Ground states and formal duality relations in the Gaussian core model
We study dimensional trends in ground states for soft-matter systems. Specifically, using a high-dimensional version of Parrinello-Rahman dynamics, we investigate the behavior of the Gaussian core model in up to eight dimensions. The results include unexpected geometric structures, with surprising a...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
American Physical Society
2013
|
Online Access: | http://hdl.handle.net/1721.1/80830 https://orcid.org/0000-0001-9261-4656 |
Summary: | We study dimensional trends in ground states for soft-matter systems. Specifically, using a high-dimensional version of Parrinello-Rahman dynamics, we investigate the behavior of the Gaussian core model in up to eight dimensions. The results include unexpected geometric structures, with surprising anisotropy as well as formal duality relations. These duality relations suggest that the Gaussian core model possesses unexplored symmetries, and they have implications for a broad range of soft-core potentials. |
---|