Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers’ equation
In this paper we present rigorous a posteriori L 2 error bounds for reduced basis approximations of the unsteady viscous Burgers’ equation in one space dimension. The a posteriori error estimator, derived from standard analysis of the error-residual equation, comprises two key ingredients—both of wh...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Springer-Verlag
2013
|
Online Access: | http://hdl.handle.net/1721.1/81221 https://orcid.org/0000-0002-0810-8812 https://orcid.org/0000-0002-2631-6463 |
Summary: | In this paper we present rigorous a posteriori L 2 error bounds for reduced basis approximations of the unsteady viscous Burgers’ equation in one space dimension. The a posteriori error estimator, derived from standard analysis of the error-residual equation, comprises two key ingredients—both of which admit efficient Offline-Online treatment: the first is a sum over timesteps of the square of the dual norm of the residual; the second is an accurate upper bound (computed by the Successive Constraint Method) for the exponential-in-time stability factor. These error bounds serve both Offline for construction of the reduced basis space by a new POD-Greedy procedure and Online for verification of fidelity. The a posteriori error bounds are practicable for final times (measured in convective units) T≈O(1) and Reynolds numbers ν[superscript −1]≫1; we present numerical results for a (stationary) steepening front for T=2 and 1≤ν[superscript −1]≤200. |
---|