Model predictive control for ascent load management of a reusable launch vehicle
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2002.
Main Author: | |
---|---|
Other Authors: | |
Format: | Thesis |
Language: | eng |
Published: |
Massachusetts Institute of Technology
2005
|
Subjects: | |
Online Access: | http://hdl.handle.net/1721.1/8126 |
_version_ | 1826197423969533952 |
---|---|
author | Martin, Andrew Allen, 1977- |
author2 | Frederick W. Boelitz. |
author_facet | Frederick W. Boelitz. Martin, Andrew Allen, 1977- |
author_sort | Martin, Andrew Allen, 1977- |
collection | MIT |
description | Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2002. |
first_indexed | 2024-09-23T10:47:28Z |
format | Thesis |
id | mit-1721.1/8126 |
institution | Massachusetts Institute of Technology |
language | eng |
last_indexed | 2024-09-23T10:47:28Z |
publishDate | 2005 |
publisher | Massachusetts Institute of Technology |
record_format | dspace |
spelling | mit-1721.1/81262019-04-11T02:20:29Z Model predictive control for ascent load management of a reusable launch vehicle Martin, Andrew Allen, 1977- Frederick W. Boelitz. Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics. Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics. Aeronautics and Astronautics. Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2002. Includes bibliographical references (p. 188-189). During the boost phase of ascent, winds have a significant impact on a launch vehicle's angle of attack, and can induce large structural loads on the vehicle. Traditional methods for mitigating these loads involve measuring the winds prior to launch and designing trajectories to minimize the vehicle angle of attack (a). The current balloon-based method of collecting wind field information produces wind profiles with significant uncertainty due to the inherent time delays associated with balloon measurement procedures. Managing the mission risk caused by these uncertain wind measurements has always been important to control system designers. This thesis will describe a novel approach to managing structural loads through the combination of a Light Detection and Ranging (LIDAR) wind sensor, and Model Predictive Control (MPC). LIDAR wind sensors can provide near real-time wind measurements, significantly reducing wind uncertainty at launch. MPC takes full advantage of this current wind information through a unique combination of proactive control, constraint integration and tuning flexibility. This thesis describes the development of two types of MPC controllers, as well as a baseline controller representative of current control methods used by industry. A complete description of Model Predictive Control theory and derivation of the necessary control matrices is included. The performance of each MPC controller is compared to that of the baseline controller for a wide range of wind profiles from both the Eastern and Western U.S. Test Ranges. Both MPC controllers are shown to provide reductions of greater than 50% in a, Qa and structural bending moments. In addition, the effects of wind measurement delays and uncertainty on the performance of each controller are investigated. by Andrew Allen Martin. S.M. 2005-08-24T20:33:09Z 2005-08-24T20:33:09Z 2002 2002 Thesis http://hdl.handle.net/1721.1/8126 51679326 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 189 p. 10857967 bytes 10857726 bytes application/pdf application/pdf application/pdf Massachusetts Institute of Technology |
spellingShingle | Aeronautics and Astronautics. Martin, Andrew Allen, 1977- Model predictive control for ascent load management of a reusable launch vehicle |
title | Model predictive control for ascent load management of a reusable launch vehicle |
title_full | Model predictive control for ascent load management of a reusable launch vehicle |
title_fullStr | Model predictive control for ascent load management of a reusable launch vehicle |
title_full_unstemmed | Model predictive control for ascent load management of a reusable launch vehicle |
title_short | Model predictive control for ascent load management of a reusable launch vehicle |
title_sort | model predictive control for ascent load management of a reusable launch vehicle |
topic | Aeronautics and Astronautics. |
url | http://hdl.handle.net/1721.1/8126 |
work_keys_str_mv | AT martinandrewallen1977 modelpredictivecontrolforascentloadmanagementofareusablelaunchvehicle |