A predictive, size-dependent continuum model for dense granular flows
Dense granular materials display a complicated set of flow properties, which differentiate them from ordinary fluids. Despite their ubiquity, no model has been developed that captures or predicts the complexities of granular flow, posing an obstacle in industrial and geophysical applications. Here w...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
National Academy of Sciences (U.S.)
2013
|
Online Access: | http://hdl.handle.net/1721.1/81299 https://orcid.org/0000-0002-5154-9787 |
_version_ | 1811079896248614912 |
---|---|
author | Henann, David Lee Kamrin, Kenneth N. |
author2 | Massachusetts Institute of Technology. Department of Mechanical Engineering |
author_facet | Massachusetts Institute of Technology. Department of Mechanical Engineering Henann, David Lee Kamrin, Kenneth N. |
author_sort | Henann, David Lee |
collection | MIT |
description | Dense granular materials display a complicated set of flow properties, which differentiate them from ordinary fluids. Despite their ubiquity, no model has been developed that captures or predicts the complexities of granular flow, posing an obstacle in industrial and geophysical applications. Here we propose a 3D constitutive model for well-developed, dense granular flows aimed at filling this need. The key ingredient of the theory is a grain-size-dependent nonlocal rheology—inspired by efforts for emulsions—in which flow at a point is affected by the local stress as well as the flow in neighboring material. The microscopic physical basis for this approach borrows from recent principles in soft glassy rheology. The size-dependence is captured using a single material parameter, and the resulting model is able to quantitatively describe dense granular flows in an array of different geometries. Of particular importance, it passes the stringent test of capturing all aspects of the highly nontrivial flows observed in split-bottom cells—a geometry that has resisted modeling efforts for nearly a decade. A key benefit of the model is its simple-to-implement and highly predictive final form, as needed for many real-world applications. |
first_indexed | 2024-09-23T11:22:15Z |
format | Article |
id | mit-1721.1/81299 |
institution | Massachusetts Institute of Technology |
language | en_US |
last_indexed | 2024-09-23T11:22:15Z |
publishDate | 2013 |
publisher | National Academy of Sciences (U.S.) |
record_format | dspace |
spelling | mit-1721.1/812992022-09-27T19:04:33Z A predictive, size-dependent continuum model for dense granular flows Henann, David Lee Kamrin, Kenneth N. Massachusetts Institute of Technology. Department of Mechanical Engineering Henann, David Lee Kamrin, Kenneth N. Dense granular materials display a complicated set of flow properties, which differentiate them from ordinary fluids. Despite their ubiquity, no model has been developed that captures or predicts the complexities of granular flow, posing an obstacle in industrial and geophysical applications. Here we propose a 3D constitutive model for well-developed, dense granular flows aimed at filling this need. The key ingredient of the theory is a grain-size-dependent nonlocal rheology—inspired by efforts for emulsions—in which flow at a point is affected by the local stress as well as the flow in neighboring material. The microscopic physical basis for this approach borrows from recent principles in soft glassy rheology. The size-dependence is captured using a single material parameter, and the resulting model is able to quantitatively describe dense granular flows in an array of different geometries. Of particular importance, it passes the stringent test of capturing all aspects of the highly nontrivial flows observed in split-bottom cells—a geometry that has resisted modeling efforts for nearly a decade. A key benefit of the model is its simple-to-implement and highly predictive final form, as needed for many real-world applications. Massachusetts Institute of Technology. Dept. of Mechanical Engineering 2013-10-04T12:09:31Z 2013-10-04T12:09:31Z 2013-03 2012-11 Article http://purl.org/eprint/type/JournalArticle 0027-8424 1091-6490 http://hdl.handle.net/1721.1/81299 Henann, D. L., and K. Kamrin. “A predictive, size-dependent continuum model for dense granular flows.” Proceedings of the National Academy of Sciences 110, no. 17 (April 23, 2013): 6730-6735. https://orcid.org/0000-0002-5154-9787 en_US http://dx.doi.org/10.1073/pnas.1219153110 Proceedings of the National Academy of Sciences Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. application/pdf National Academy of Sciences (U.S.) PNAS |
spellingShingle | Henann, David Lee Kamrin, Kenneth N. A predictive, size-dependent continuum model for dense granular flows |
title | A predictive, size-dependent continuum model for dense granular flows |
title_full | A predictive, size-dependent continuum model for dense granular flows |
title_fullStr | A predictive, size-dependent continuum model for dense granular flows |
title_full_unstemmed | A predictive, size-dependent continuum model for dense granular flows |
title_short | A predictive, size-dependent continuum model for dense granular flows |
title_sort | predictive size dependent continuum model for dense granular flows |
url | http://hdl.handle.net/1721.1/81299 https://orcid.org/0000-0002-5154-9787 |
work_keys_str_mv | AT henanndavidlee apredictivesizedependentcontinuummodelfordensegranularflows AT kamrinkennethn apredictivesizedependentcontinuummodelfordensegranularflows AT henanndavidlee predictivesizedependentcontinuummodelfordensegranularflows AT kamrinkennethn predictivesizedependentcontinuummodelfordensegranularflows |