Physically based modeling of rainfall-triggered landslides: a case study in the Luquillo forest, Puerto Rico
This paper presents the development of a rainfall-triggered landslide module within an existing physically based spatially distributed ecohydrologic model. The model, tRIBS-VEGGIE (Triangulated Irregular Networks-based Real-time Integrated Basin Simulator and Vegetation Generator for Interactive Evo...
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Copernicus GmbH
2013
|
Online Access: | http://hdl.handle.net/1721.1/81321 |
_version_ | 1811070741611806720 |
---|---|
author | Arnone, E. Noto, L. V. Sivandran, G. Bras, Rafael L. Lepore, Chiara |
author2 | Massachusetts Institute of Technology. Department of Civil and Environmental Engineering |
author_facet | Massachusetts Institute of Technology. Department of Civil and Environmental Engineering Arnone, E. Noto, L. V. Sivandran, G. Bras, Rafael L. Lepore, Chiara |
author_sort | Arnone, E. |
collection | MIT |
description | This paper presents the development of a rainfall-triggered landslide module within an existing physically based spatially distributed ecohydrologic model. The model, tRIBS-VEGGIE (Triangulated Irregular Networks-based Real-time Integrated Basin Simulator and Vegetation Generator for Interactive Evolution), is capable of a sophisticated description of many hydrological processes; in particular, the soil moisture dynamics are resolved at a temporal and spatial resolution required to examine the triggering mechanisms of rainfall-induced landslides. The validity of the tRIBS-VEGGIE model to a tropical environment is shown with an evaluation of its performance against direct observations made within the study area of Luquillo Forest.
The newly developed landslide module builds upon the previous version of the tRIBS landslide component. This new module utilizes a numerical solution to the Richards' equation (present in tRIBS-VEGGIE but not in tRIBS), which better represents the time evolution of soil moisture transport through the soil column. Moreover, the new landslide module utilizes an extended formulation of the factor of safety (FS) to correctly quantify the role of matric suction in slope stability and to account for unsaturated conditions in the evaluation of FS.
The new modeling framework couples the capabilities of the detailed hydrologic model to describe soil moisture dynamics with the infinite slope model, creating a powerful tool for the assessment of rainfall-triggered landslide risk. |
first_indexed | 2024-09-23T08:40:50Z |
format | Article |
id | mit-1721.1/81321 |
institution | Massachusetts Institute of Technology |
language | en_US |
last_indexed | 2024-09-23T08:40:50Z |
publishDate | 2013 |
publisher | Copernicus GmbH |
record_format | dspace |
spelling | mit-1721.1/813212022-09-30T10:28:35Z Physically based modeling of rainfall-triggered landslides: a case study in the Luquillo forest, Puerto Rico Arnone, E. Noto, L. V. Sivandran, G. Bras, Rafael L. Lepore, Chiara Massachusetts Institute of Technology. Department of Civil and Environmental Engineering Parsons Laboratory for Environmental Science and Engineering (Massachusetts Institute of Technology) Lepore, Chiara This paper presents the development of a rainfall-triggered landslide module within an existing physically based spatially distributed ecohydrologic model. The model, tRIBS-VEGGIE (Triangulated Irregular Networks-based Real-time Integrated Basin Simulator and Vegetation Generator for Interactive Evolution), is capable of a sophisticated description of many hydrological processes; in particular, the soil moisture dynamics are resolved at a temporal and spatial resolution required to examine the triggering mechanisms of rainfall-induced landslides. The validity of the tRIBS-VEGGIE model to a tropical environment is shown with an evaluation of its performance against direct observations made within the study area of Luquillo Forest. The newly developed landslide module builds upon the previous version of the tRIBS landslide component. This new module utilizes a numerical solution to the Richards' equation (present in tRIBS-VEGGIE but not in tRIBS), which better represents the time evolution of soil moisture transport through the soil column. Moreover, the new landslide module utilizes an extended formulation of the factor of safety (FS) to correctly quantify the role of matric suction in slope stability and to account for unsaturated conditions in the evaluation of FS. The new modeling framework couples the capabilities of the detailed hydrologic model to describe soil moisture dynamics with the infinite slope model, creating a powerful tool for the assessment of rainfall-triggered landslide risk. United States. National Aeronautics and Space Administration (Project NNX07AD29G) 2013-10-04T16:32:26Z 2013-10-04T16:32:26Z 2013-09 2013-07 Article http://purl.org/eprint/type/JournalArticle 1607-7938 http://hdl.handle.net/1721.1/81321 Lepore, C., E. Arnone, L. V. Noto, G. Sivandran, and R. L. Bras. “Physically based modeling of rainfall-triggered landslides: a case study in the Luquillo forest, Puerto Rico.” Hydrology and Earth System Sciences 17, no. 9 (September 3, 2013): 3371-3387. en_US http://dx.doi.org/10.5194/hess-17-3371-2013 Hydrology and Earth System Sciences http://creativecommons.org/licenses/by/3.0/ application/pdf Copernicus GmbH Copernicus GmbH |
spellingShingle | Arnone, E. Noto, L. V. Sivandran, G. Bras, Rafael L. Lepore, Chiara Physically based modeling of rainfall-triggered landslides: a case study in the Luquillo forest, Puerto Rico |
title | Physically based modeling of rainfall-triggered landslides: a case study in the Luquillo forest, Puerto Rico |
title_full | Physically based modeling of rainfall-triggered landslides: a case study in the Luquillo forest, Puerto Rico |
title_fullStr | Physically based modeling of rainfall-triggered landslides: a case study in the Luquillo forest, Puerto Rico |
title_full_unstemmed | Physically based modeling of rainfall-triggered landslides: a case study in the Luquillo forest, Puerto Rico |
title_short | Physically based modeling of rainfall-triggered landslides: a case study in the Luquillo forest, Puerto Rico |
title_sort | physically based modeling of rainfall triggered landslides a case study in the luquillo forest puerto rico |
url | http://hdl.handle.net/1721.1/81321 |
work_keys_str_mv | AT arnonee physicallybasedmodelingofrainfalltriggeredlandslidesacasestudyintheluquilloforestpuertorico AT notolv physicallybasedmodelingofrainfalltriggeredlandslidesacasestudyintheluquilloforestpuertorico AT sivandrang physicallybasedmodelingofrainfalltriggeredlandslidesacasestudyintheluquilloforestpuertorico AT brasrafaell physicallybasedmodelingofrainfalltriggeredlandslidesacasestudyintheluquilloforestpuertorico AT leporechiara physicallybasedmodelingofrainfalltriggeredlandslidesacasestudyintheluquilloforestpuertorico |