Inducing Time-Reversal-Invariant Topological Superconductivity and Fermion Parity Pumping in Quantum Wires

We propose a setup to realize time-reversal-invariant topological superconductors in quantum wires, proximity coupled to conventional superconductors. We consider a model of quantum wire with strong spin-orbit coupling and proximity coupling to two s-wave superconductors. When the relative phase bet...

Full description

Bibliographic Details
Main Authors: Keselman, Anna, Fu, Liang, Stern, Ady, Berg, Erez
Other Authors: Massachusetts Institute of Technology. Department of Physics
Format: Article
Language:en_US
Published: American Physical Society 2013
Online Access:http://hdl.handle.net/1721.1/81385
https://orcid.org/0000-0002-8803-1017
Description
Summary:We propose a setup to realize time-reversal-invariant topological superconductors in quantum wires, proximity coupled to conventional superconductors. We consider a model of quantum wire with strong spin-orbit coupling and proximity coupling to two s-wave superconductors. When the relative phase between the two superconductors is ϕ=π a Kramers pair of Majorana zero modes appears at each edge of the wire. We study the robustness of the phase in the presence of both time-reversal-invariant and time-reversal-breaking perturbations. In addition, we show that the system forms a natural realization of a fermion parity pump, switching the local fermion parity of both edges when the relative phase between the superconductors is changed adiabatically by 2π.