Compact Zwitterion-Coated Iron Oxide Nanoparticles for Biological Applications
The potential of superparamagnetic iron oxide nanoparticles (SPIONs) in various biomedical applications, including magnetic resonance imaging (MRI), sensing, and drug delivery, requires that their surface be derivatized to be hydrophilic and biocompatible. We report here the design and synthesis of...
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
American Institute of Physics (AIP)
2013
|
Online Access: | http://hdl.handle.net/1721.1/81987 https://orcid.org/0000-0002-1694-4722 https://orcid.org/0000-0003-2220-4365 https://orcid.org/0000-0001-7188-8105 |
Summary: | The potential of superparamagnetic iron oxide nanoparticles (SPIONs) in various biomedical applications, including magnetic resonance imaging (MRI), sensing, and drug delivery, requires that their surface be derivatized to be hydrophilic and biocompatible. We report here the design and synthesis of a compact and water-soluble zwitterionic dopamine sulfonate (ZDS) ligand with strong binding affinity to SPIONs. After ligand exchange, the ZDS-coated SPIONs exhibit small hydrodynamic diameters, and stability with respect to time, pH, and salinity. Furthermore, small ZDS coated SPIONs were found to have a reduced nonspecific affinity (compared to negatively charged SPIONs) toward serum proteins; streptavidin/dye functionalized SPIONs were bioactive and thus specifically targeted biotin receptors. |
---|