Chemical shift anisotropy selective inversion
Magic angle spinning (MAS) is used in solid-state NMR to remove the broadening effects of the chemical shift anisotropy (CSA). In this work we investigate a technique that can reintroduce the CSA in order to selectively invert transverse magnetization. The technique involves an amplitude sweep of th...
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Elsevier B.V.
2013
|
Online Access: | http://hdl.handle.net/1721.1/82061 https://orcid.org/0000-0003-1589-832X |
Summary: | Magic angle spinning (MAS) is used in solid-state NMR to remove the broadening effects of the chemical shift anisotropy (CSA). In this work we investigate a technique that can reintroduce the CSA in order to selectively invert transverse magnetization. The technique involves an amplitude sweep of the radio frequency field through a multiple of the spinning frequency. The selectivity of this inversion mechanism is determined by the size of the CSA. We develop a theoretical framework to describe this process and demonstrate the CSA selective inversion with numerical simulations and experimental data. We combine this approach with cross-polarization (CP) for potential applications in multi-dimensional MAS NMR. |
---|