Nonlinear Terahertz Metamaterials via Field-Enhanced Carrier Dynamics in GaAs

We demonstrate nonlinear metamaterial split ring resonators (SRRs) on GaAs at terahertz frequencies. For SRRs on doped GaAs films, incident terahertz radiation with peak fields of ∼20–160  kV/cm drives intervalley scattering. This reduces the carrier mobility and enhances the SRR LC response due to...

Full description

Bibliographic Details
Main Authors: Fan, Kebin, Hwang, Harold Young, Liu, Mengkun, Strikwerda, Andrew C., Sternbach, Aaron, Zhang, Jingdi, Zhao, Xiaoguang, Zhang, Xin, Nelson, Keith Adam, Averitt, Richard D.
Other Authors: Massachusetts Institute of Technology. Department of Chemistry
Format: Article
Language:en_US
Published: 2013
Online Access:http://hdl.handle.net/1721.1/82134
https://orcid.org/0000-0001-7804-5418
_version_ 1826216829853368320
author Fan, Kebin
Hwang, Harold Young
Liu, Mengkun
Strikwerda, Andrew C.
Sternbach, Aaron
Zhang, Jingdi
Zhao, Xiaoguang
Zhang, Xin
Nelson, Keith Adam
Averitt, Richard D.
author2 Massachusetts Institute of Technology. Department of Chemistry
author_facet Massachusetts Institute of Technology. Department of Chemistry
Fan, Kebin
Hwang, Harold Young
Liu, Mengkun
Strikwerda, Andrew C.
Sternbach, Aaron
Zhang, Jingdi
Zhao, Xiaoguang
Zhang, Xin
Nelson, Keith Adam
Averitt, Richard D.
author_sort Fan, Kebin
collection MIT
description We demonstrate nonlinear metamaterial split ring resonators (SRRs) on GaAs at terahertz frequencies. For SRRs on doped GaAs films, incident terahertz radiation with peak fields of ∼20–160  kV/cm drives intervalley scattering. This reduces the carrier mobility and enhances the SRR LC response due to a conductivity decrease in the doped thin film. Above ∼160  kV/cm, electric field enhancement within the SRR gaps leads to efficient impact ionization, increasing the carrier density and the conductivity which, in turn, suppresses the SRR resonance. We demonstrate an increase of up to 10 orders of magnitude in the carrier density in the SRR gaps on semi-insulating GaAs. Furthermore, we show that the effective permittivity can be swept from negative to positive values with an increasing terahertz field strength in the impact ionization regime, enabling new possibilities for nonlinear metamaterials.
first_indexed 2024-09-23T16:53:47Z
format Article
id mit-1721.1/82134
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T16:53:47Z
publishDate 2013
record_format dspace
spelling mit-1721.1/821342022-10-03T09:00:21Z Nonlinear Terahertz Metamaterials via Field-Enhanced Carrier Dynamics in GaAs Fan, Kebin Hwang, Harold Young Liu, Mengkun Strikwerda, Andrew C. Sternbach, Aaron Zhang, Jingdi Zhao, Xiaoguang Zhang, Xin Nelson, Keith Adam Averitt, Richard D. Massachusetts Institute of Technology. Department of Chemistry Hwang, Harold Young Nelson, Keith Adam We demonstrate nonlinear metamaterial split ring resonators (SRRs) on GaAs at terahertz frequencies. For SRRs on doped GaAs films, incident terahertz radiation with peak fields of ∼20–160  kV/cm drives intervalley scattering. This reduces the carrier mobility and enhances the SRR LC response due to a conductivity decrease in the doped thin film. Above ∼160  kV/cm, electric field enhancement within the SRR gaps leads to efficient impact ionization, increasing the carrier density and the conductivity which, in turn, suppresses the SRR resonance. We demonstrate an increase of up to 10 orders of magnitude in the carrier density in the SRR gaps on semi-insulating GaAs. Furthermore, we show that the effective permittivity can be swept from negative to positive values with an increasing terahertz field strength in the impact ionization regime, enabling new possibilities for nonlinear metamaterials. United States. Office of Naval Research (ONR Grant No. N00014-09-1-1103) United States. Air Force Office of Scientific Research (AFOSR Grant No. FA9550-09- 1-0708) United States. Defense Threat Reduction Agency (C&B Technologies Directorate) 2013-11-15T18:18:07Z 2013-11-15T18:18:07Z 2013-05 2013-03 Article http://purl.org/eprint/type/JournalArticle 0031-9007 1079-7114 http://hdl.handle.net/1721.1/82134 Fan, Kebin, Harold Y. Hwang, Mengkun Liu, Andrew C. Strikwerda, Aaron Sternbach, Jingdi Zhang, Xiaoguang Zhao, Xin Zhang, Keith A. Nelson, and Richard D. Averitt. Nonlinear Terahertz Metamaterials via Field-Enhanced Carrier Dynamics in GaAs. Physical Review Letters 110, no. 21 (May 2013). https://orcid.org/0000-0001-7804-5418 en_US http://dx.doi.org/10.1103/PhysRevLett.110.217404 Physical Review Letters Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. application/pdf APS
spellingShingle Fan, Kebin
Hwang, Harold Young
Liu, Mengkun
Strikwerda, Andrew C.
Sternbach, Aaron
Zhang, Jingdi
Zhao, Xiaoguang
Zhang, Xin
Nelson, Keith Adam
Averitt, Richard D.
Nonlinear Terahertz Metamaterials via Field-Enhanced Carrier Dynamics in GaAs
title Nonlinear Terahertz Metamaterials via Field-Enhanced Carrier Dynamics in GaAs
title_full Nonlinear Terahertz Metamaterials via Field-Enhanced Carrier Dynamics in GaAs
title_fullStr Nonlinear Terahertz Metamaterials via Field-Enhanced Carrier Dynamics in GaAs
title_full_unstemmed Nonlinear Terahertz Metamaterials via Field-Enhanced Carrier Dynamics in GaAs
title_short Nonlinear Terahertz Metamaterials via Field-Enhanced Carrier Dynamics in GaAs
title_sort nonlinear terahertz metamaterials via field enhanced carrier dynamics in gaas
url http://hdl.handle.net/1721.1/82134
https://orcid.org/0000-0001-7804-5418
work_keys_str_mv AT fankebin nonlinearterahertzmetamaterialsviafieldenhancedcarrierdynamicsingaas
AT hwangharoldyoung nonlinearterahertzmetamaterialsviafieldenhancedcarrierdynamicsingaas
AT liumengkun nonlinearterahertzmetamaterialsviafieldenhancedcarrierdynamicsingaas
AT strikwerdaandrewc nonlinearterahertzmetamaterialsviafieldenhancedcarrierdynamicsingaas
AT sternbachaaron nonlinearterahertzmetamaterialsviafieldenhancedcarrierdynamicsingaas
AT zhangjingdi nonlinearterahertzmetamaterialsviafieldenhancedcarrierdynamicsingaas
AT zhaoxiaoguang nonlinearterahertzmetamaterialsviafieldenhancedcarrierdynamicsingaas
AT zhangxin nonlinearterahertzmetamaterialsviafieldenhancedcarrierdynamicsingaas
AT nelsonkeithadam nonlinearterahertzmetamaterialsviafieldenhancedcarrierdynamicsingaas
AT averittrichardd nonlinearterahertzmetamaterialsviafieldenhancedcarrierdynamicsingaas