Digital assistance design for analog systems : digital baseband for outphasing power amplifiers

Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.

Bibliographic Details
Main Author: Li, Yan, Ph. D. Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Other Authors: Vladimir M. Stojanović.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2013
Subjects:
Online Access:http://hdl.handle.net/1721.1/82353
_version_ 1811075295160041472
author Li, Yan, Ph. D. Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
author2 Vladimir M. Stojanović.
author_facet Vladimir M. Stojanović.
Li, Yan, Ph. D. Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
author_sort Li, Yan, Ph. D. Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
collection MIT
description Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.
first_indexed 2024-09-23T10:03:47Z
format Thesis
id mit-1721.1/82353
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T10:03:47Z
publishDate 2013
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/823532019-04-12T21:22:38Z Digital assistance design for analog systems : digital baseband for outphasing power amplifiers Li, Yan, Ph. D. Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science Vladimir M. Stojanović. Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science. Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science. Electrical Engineering and Computer Science. Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013. Cataloged from PDF version of thesis. Includes bibliographical references (p. 145-150). Digital assistance is among many aspects that can be leveraged to help analog/mixed-signal designers keep up with the technology scaling. It usually takes the form of predistorter or compensator in an analog/mixed-signal system and helps compensate the nonidealities in the system. Digital assistance takes advantage of the process scaling with faster speed and a higher level of integration. When a digital system is co-optimized with system modeling techniques, digital assistance usually becomes a key enabling block for the high performance of the overall system. This thesis presents the design of digital assistances through the digital baseband design for outphasing power amplifiers. In the digital baseband design, this thesis conveys two major points: the importance of the use of the reduced-complexity system modeling techniques, and the communications between hardware design and system modeling. These points greatly help the success in the design of the energy-efficient baseband. The first part of the baseband design is to realize the nonlinear signal processing unit required by the modulation scheme. Conventional approaches of implementing this functionality do not scale well to meet the throughput, area and energy-efficiency targets. We propose a novel fixed-point piece-wise linear approximation technique for the nonlinear function computations involved in the signal processing unit. The new technique allows us to achieve an energy and area-efficient design with a throughput of 3.4Gsamples/s. Compared to the projected previous designs, our design shows 2x improvement in energy-efficiency and 25x in area-efficiency. The second part of the baseband design devotes to the nonlinear compensator design, aiming to improve the linearity performance of the outphasing power amplifier. We first explore the feasibility of a working compensator by use of an off-line iterative solving scheme. With the confirmation that a compensator does exist, we analyze the structure of the nonlinear baseband-equivalent PA system and create a dynamical real-time compensator model. The resulting compensator provides the overall PA system with around 10dB improvement in ACPR and up to 2.5% in EVM. by Yan Li. Ph.D. 2013-11-18T19:12:34Z 2013-11-18T19:12:34Z 2013 2013 Thesis http://hdl.handle.net/1721.1/82353 861744092 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 150 p. application/pdf Massachusetts Institute of Technology
spellingShingle Electrical Engineering and Computer Science.
Li, Yan, Ph. D. Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Digital assistance design for analog systems : digital baseband for outphasing power amplifiers
title Digital assistance design for analog systems : digital baseband for outphasing power amplifiers
title_full Digital assistance design for analog systems : digital baseband for outphasing power amplifiers
title_fullStr Digital assistance design for analog systems : digital baseband for outphasing power amplifiers
title_full_unstemmed Digital assistance design for analog systems : digital baseband for outphasing power amplifiers
title_short Digital assistance design for analog systems : digital baseband for outphasing power amplifiers
title_sort digital assistance design for analog systems digital baseband for outphasing power amplifiers
topic Electrical Engineering and Computer Science.
url http://hdl.handle.net/1721.1/82353
work_keys_str_mv AT liyanphdmassachusettsinstituteoftechnologydepartmentofelectricalengineeringandcomputerscience digitalassistancedesignforanalogsystemsdigitalbasebandforoutphasingpoweramplifiers