X-ray imaging crystal spectroscopy for use in plasma transport research
This research describes advancements in the spectral analysis and error propagation techniques associated with x-ray imaging crystal spectroscopy (XICS) that have enabled this diagnostic to be used to accurately constrain particle, momentum, and heat transport studies in a tokamak for the first time...
Main Authors: | , , , , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
American Institute of Physics (AIP)
2014
|
Online Access: | http://hdl.handle.net/1721.1/84059 https://orcid.org/0000-0001-8319-5971 https://orcid.org/0000-0002-9604-204X https://orcid.org/0000-0003-2951-9749 https://orcid.org/0000-0002-4438-729X https://orcid.org/0000-0002-0026-6939 |
Summary: | This research describes advancements in the spectral analysis and error propagation techniques associated with x-ray imaging crystal spectroscopy (XICS) that have enabled this diagnostic to be used to accurately constrain particle, momentum, and heat transport studies in a tokamak for the first time. Dopplertomography techniques have been extended to include propagation of statistical uncertainty due to photon noise, the effect of non-uniform instrumental broadening as well as flux surface variations in impurity density. These methods have been deployed as a suite of modeling and analysis tools, written in interactive data language (IDL) and designed for general use on tokamaks. Its application to the Alcator C-Mod XICS is discussed, along with novel spectral and spatial calibration techniques. Example ion temperature and radial electric field profiles from recent I-mode plasmas are shown, and the impact of poloidally asymmetric impurity density and natural line broadening is discussed in the context of the planned ITER x-ray crystal spectrometer. |
---|