Ligand-Gated Chloride Channels Are Receptors for Biogenic Amines in C. elegans
Biogenic amines such as serotonin and dopamine are intercellular signaling molecules that function widely as neurotransmitters and neuromodulators. We have identified in the nematode Caenorhabditis elegans three ligand-gated chloride channels that are receptors for biogenic amines: LGC-53 is a high-...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
American Association for the Advancement of Science (AAAS)
2014
|
Online Access: | http://hdl.handle.net/1721.1/84506 https://orcid.org/0000-0002-9964-9613 |
Summary: | Biogenic amines such as serotonin and dopamine are intercellular signaling molecules that function widely as neurotransmitters and neuromodulators. We have identified in the nematode Caenorhabditis elegans three ligand-gated chloride channels that are receptors for biogenic amines: LGC-53 is a high-affinity dopamine receptor, LGC-55 is a high-affinity tyramine receptor, and LGC-40 is a low-affinity serotonin receptor that is also gated by choline and acetylcholine. lgc-55 mutants are defective in a behavior that requires endogenous tyramine, which indicates that this ionotropic tyramine receptor functions in tyramine signaling in vivo. Our studies suggest that direct activation of membrane chloride conductances is a general mechanism of action for biogenic amines in the modulation of C. elegans behavior. |
---|