_version_ 1826197792758956032
author Barsotti, Lisa
Bodiya, Timothy Paul
Corbitt, Thomas R.
Donovan, Frederick J.
Dwyer, S.
Evans, Matthew J.
Foley, S.
Fritschel, Peter K.
Katsavounidis, Erotokritos
Kissel, Jeffrey S.
Kwee, Patrick
MacInnis, Myron E.
Mason, Kenneth R.
Matichard, Fabrice
Mavalvala, Nergis
Mittleman, Richard K.
Oelker, Eric Glenn
Sankar, S.
Shapiro, B.
Shoemaker, David H.
Smith-Lefebvre, N. D.
Vaulin, Ruslan
Waldman, S. J.
Weiss, Ron
Wipf, Christopher
Zucker, Michael E.
author2 Massachusetts Institute of Technology. Department of Physics
author_facet Massachusetts Institute of Technology. Department of Physics
Barsotti, Lisa
Bodiya, Timothy Paul
Corbitt, Thomas R.
Donovan, Frederick J.
Dwyer, S.
Evans, Matthew J.
Foley, S.
Fritschel, Peter K.
Katsavounidis, Erotokritos
Kissel, Jeffrey S.
Kwee, Patrick
MacInnis, Myron E.
Mason, Kenneth R.
Matichard, Fabrice
Mavalvala, Nergis
Mittleman, Richard K.
Oelker, Eric Glenn
Sankar, S.
Shapiro, B.
Shoemaker, David H.
Smith-Lefebvre, N. D.
Vaulin, Ruslan
Waldman, S. J.
Weiss, Ron
Wipf, Christopher
Zucker, Michael E.
author_sort Barsotti, Lisa
collection MIT
description Compact binary systems with neutron stars or black holes are one of the most promising sources for ground-based gravitational-wave detectors. Gravitational radiation encodes rich information about source physics; thus parameter estimation and model selection are crucial analysis steps for any detection candidate events. Detailed models of the anticipated waveforms enable inference on several parameters, such as component masses, spins, sky location and distance, that are essential for new astrophysical studies of these sources. However, accurate measurements of these parameters and discrimination of models describing the underlying physics are complicated by artifacts in the data, uncertainties in the waveform models and in the calibration of the detectors. Here we report such measurements on a selection of simulated signals added either in hardware or software to the data collected by the two LIGO instruments and the Virgo detector during their most recent joint science run, including a “blind injection” where the signal was not initially revealed to the collaboration. We exemplify the ability to extract information about the source physics on signals that cover the neutron-star and black-hole binary parameter space over the component mass range 1 M[subscript ⊙]–25 M[subscript ⊙] and the full range of spin parameters. The cases reported in this study provide a snapshot of the status of parameter estimation in preparation for the operation of advanced detectors.
first_indexed 2024-09-23T10:53:13Z
format Article
id mit-1721.1/84921
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T10:53:13Z
publishDate 2014
publisher American Physical Society
record_format dspace
spelling mit-1721.1/849212022-09-30T23:42:20Z Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network Barsotti, Lisa Bodiya, Timothy Paul Corbitt, Thomas R. Donovan, Frederick J. Dwyer, S. Evans, Matthew J. Foley, S. Fritschel, Peter K. Katsavounidis, Erotokritos Kissel, Jeffrey S. Kwee, Patrick MacInnis, Myron E. Mason, Kenneth R. Matichard, Fabrice Mavalvala, Nergis Mittleman, Richard K. Oelker, Eric Glenn Sankar, S. Shapiro, B. Shoemaker, David H. Smith-Lefebvre, N. D. Vaulin, Ruslan Waldman, S. J. Weiss, Ron Wipf, Christopher Zucker, Michael E. Massachusetts Institute of Technology. Department of Physics MIT Kavli Institute for Astrophysics and Space Research LIGO (Observatory : Massachusetts Institute of Technology) Barsotti, Lisa Bodiya, Timothy Paul Corbitt, Thomas R. Donovan, Frederick J. Dwyer, S. Evans, Matthew J. Foley, S. Fritschel, Peter K. Katsavounidis, Erotokritos Kissel, Jeffrey S. Kwee, Patrick MacInnis, Myron E. Mason, Kenneth R. Matichard, Fabrice Mavalvala, Nergis Mittleman, Richard K. Oelker, Eric Glenn Sankar, S. Shapiro, B. Shoemaker, David H. Smith-Lefebvre, N. D. Vaulin, Ruslan Waldman, S. J. Weiss, Ron Wipf, Christopher Zucker, Michael E. Compact binary systems with neutron stars or black holes are one of the most promising sources for ground-based gravitational-wave detectors. Gravitational radiation encodes rich information about source physics; thus parameter estimation and model selection are crucial analysis steps for any detection candidate events. Detailed models of the anticipated waveforms enable inference on several parameters, such as component masses, spins, sky location and distance, that are essential for new astrophysical studies of these sources. However, accurate measurements of these parameters and discrimination of models describing the underlying physics are complicated by artifacts in the data, uncertainties in the waveform models and in the calibration of the detectors. Here we report such measurements on a selection of simulated signals added either in hardware or software to the data collected by the two LIGO instruments and the Virgo detector during their most recent joint science run, including a “blind injection” where the signal was not initially revealed to the collaboration. We exemplify the ability to extract information about the source physics on signals that cover the neutron-star and black-hole binary parameter space over the component mass range 1 M[subscript ⊙]–25 M[subscript ⊙] and the full range of spin parameters. The cases reported in this study provide a snapshot of the status of parameter estimation in preparation for the operation of advanced detectors. National Science Foundation (U.S.) Carnegie Trust Leverhulme Trust David & Lucile Packard Foundation Research Corporation Alfred P. Sloan Foundation 2014-02-10T17:16:41Z 2014-02-10T17:16:41Z 2013-09 2013-04 Article http://purl.org/eprint/type/JournalArticle 1550-7998 1550-2368 http://hdl.handle.net/1721.1/84921 Aasi, J., J. Abadie, B. P. Abbott, R. Abbott, T. D. Abbott, M. Abernathy, T. Accadia, et al. “Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network.” Physical Review D 88, no. 6 (September 2013). © 2013 American Physical Society https://orcid.org/0000-0003-0396-2443 https://orcid.org/0000-0003-0219-9706 https://orcid.org/0000-0003-2815-7387 https://orcid.org/0000-0001-6550-3045 https://orcid.org/0000-0002-4147-2560 https://orcid.org/0000-0001-8459-4499 https://orcid.org/0000-0002-2544-1596 https://orcid.org/0000-0003-1983-3187 en_US http://dx.doi.org/10.1103/PhysRevD.88.062001 Physical Review D Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. application/pdf American Physical Society American Physical Society
spellingShingle Barsotti, Lisa
Bodiya, Timothy Paul
Corbitt, Thomas R.
Donovan, Frederick J.
Dwyer, S.
Evans, Matthew J.
Foley, S.
Fritschel, Peter K.
Katsavounidis, Erotokritos
Kissel, Jeffrey S.
Kwee, Patrick
MacInnis, Myron E.
Mason, Kenneth R.
Matichard, Fabrice
Mavalvala, Nergis
Mittleman, Richard K.
Oelker, Eric Glenn
Sankar, S.
Shapiro, B.
Shoemaker, David H.
Smith-Lefebvre, N. D.
Vaulin, Ruslan
Waldman, S. J.
Weiss, Ron
Wipf, Christopher
Zucker, Michael E.
Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network
title Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network
title_full Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network
title_fullStr Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network
title_full_unstemmed Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network
title_short Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network
title_sort parameter estimation for compact binary coalescence signals with the first generation gravitational wave detector network
url http://hdl.handle.net/1721.1/84921
https://orcid.org/0000-0003-0396-2443
https://orcid.org/0000-0003-0219-9706
https://orcid.org/0000-0003-2815-7387
https://orcid.org/0000-0001-6550-3045
https://orcid.org/0000-0002-4147-2560
https://orcid.org/0000-0001-8459-4499
https://orcid.org/0000-0002-2544-1596
https://orcid.org/0000-0003-1983-3187
work_keys_str_mv AT barsottilisa parameterestimationforcompactbinarycoalescencesignalswiththefirstgenerationgravitationalwavedetectornetwork
AT bodiyatimothypaul parameterestimationforcompactbinarycoalescencesignalswiththefirstgenerationgravitationalwavedetectornetwork
AT corbittthomasr parameterestimationforcompactbinarycoalescencesignalswiththefirstgenerationgravitationalwavedetectornetwork
AT donovanfrederickj parameterestimationforcompactbinarycoalescencesignalswiththefirstgenerationgravitationalwavedetectornetwork
AT dwyers parameterestimationforcompactbinarycoalescencesignalswiththefirstgenerationgravitationalwavedetectornetwork
AT evansmatthewj parameterestimationforcompactbinarycoalescencesignalswiththefirstgenerationgravitationalwavedetectornetwork
AT foleys parameterestimationforcompactbinarycoalescencesignalswiththefirstgenerationgravitationalwavedetectornetwork
AT fritschelpeterk parameterestimationforcompactbinarycoalescencesignalswiththefirstgenerationgravitationalwavedetectornetwork
AT katsavounidiserotokritos parameterestimationforcompactbinarycoalescencesignalswiththefirstgenerationgravitationalwavedetectornetwork
AT kisseljeffreys parameterestimationforcompactbinarycoalescencesignalswiththefirstgenerationgravitationalwavedetectornetwork
AT kweepatrick parameterestimationforcompactbinarycoalescencesignalswiththefirstgenerationgravitationalwavedetectornetwork
AT macinnismyrone parameterestimationforcompactbinarycoalescencesignalswiththefirstgenerationgravitationalwavedetectornetwork
AT masonkennethr parameterestimationforcompactbinarycoalescencesignalswiththefirstgenerationgravitationalwavedetectornetwork
AT matichardfabrice parameterestimationforcompactbinarycoalescencesignalswiththefirstgenerationgravitationalwavedetectornetwork
AT mavalvalanergis parameterestimationforcompactbinarycoalescencesignalswiththefirstgenerationgravitationalwavedetectornetwork
AT mittlemanrichardk parameterestimationforcompactbinarycoalescencesignalswiththefirstgenerationgravitationalwavedetectornetwork
AT oelkerericglenn parameterestimationforcompactbinarycoalescencesignalswiththefirstgenerationgravitationalwavedetectornetwork
AT sankars parameterestimationforcompactbinarycoalescencesignalswiththefirstgenerationgravitationalwavedetectornetwork
AT shapirob parameterestimationforcompactbinarycoalescencesignalswiththefirstgenerationgravitationalwavedetectornetwork
AT shoemakerdavidh parameterestimationforcompactbinarycoalescencesignalswiththefirstgenerationgravitationalwavedetectornetwork
AT smithlefebvrend parameterestimationforcompactbinarycoalescencesignalswiththefirstgenerationgravitationalwavedetectornetwork
AT vaulinruslan parameterestimationforcompactbinarycoalescencesignalswiththefirstgenerationgravitationalwavedetectornetwork
AT waldmansj parameterestimationforcompactbinarycoalescencesignalswiththefirstgenerationgravitationalwavedetectornetwork
AT weissron parameterestimationforcompactbinarycoalescencesignalswiththefirstgenerationgravitationalwavedetectornetwork
AT wipfchristopher parameterestimationforcompactbinarycoalescencesignalswiththefirstgenerationgravitationalwavedetectornetwork
AT zuckermichaele parameterestimationforcompactbinarycoalescencesignalswiththefirstgenerationgravitationalwavedetectornetwork