Oxidation of the Guanine Nucleotide Pool Underlies Cell Death by Bactericidal Antibiotics

A detailed understanding of the mechanisms that underlie antibiotic killing is important for the derivation of new classes of antibiotics and clinically useful adjuvants for current antimicrobial therapies. Our efforts to understand why DinB (DNA polymerase IV) overproduction is cytotoxic to Escheri...

Full description

Bibliographic Details
Main Authors: Foti, James J., Devadoss, Babho, Walker, Graham C., Winkler, Jonathan A., Collins, James J.
Other Authors: Massachusetts Institute of Technology. Department of Biology
Format: Article
Language:en_US
Published: American Association for the Advancement of Science (AAAS) 2014
Online Access:http://hdl.handle.net/1721.1/85191
https://orcid.org/0000-0001-7243-8261
Description
Summary:A detailed understanding of the mechanisms that underlie antibiotic killing is important for the derivation of new classes of antibiotics and clinically useful adjuvants for current antimicrobial therapies. Our efforts to understand why DinB (DNA polymerase IV) overproduction is cytotoxic to Escherichia coli led to the unexpected insight that oxidation of guanine to 8-oxo-guanine in the nucleotide pool underlies much of the cell death caused by both DinB overproduction and bactericidal antibiotics. We propose a model in which the cytotoxicity of beta-lactams and quinolones predominantly results from lethal double-strand DNA breaks caused by incomplete repair of closely spaced 8-oxo-deoxyguanosine lesions, whereas the cytotoxicity of aminoglycosides might additionally result from mistranslation due to the incorporation of 8-oxo-guanine into newly synthesized RNAs.