A minimum entropy principle of high order schemes for gas dynamics equations

The entropy solutions of the compressible Euler equations satisfy a minimum principle for the specific entropy (Tadmor in Appl Numer Math 2:211–219, 1986). First order schemes such as Godunov-type and Lax-Friedrichs schemes and the second order kinetic schemes (Khobalatte and Perthame in Math Comput...

Full description

Bibliographic Details
Main Authors: Zhang, Xiangxiong, Shu, Chi-Wang
Other Authors: Massachusetts Institute of Technology. Department of Mathematics
Format: Article
Language:en_US
Published: Springer-Verlag 2014
Online Access:http://hdl.handle.net/1721.1/85657
Description
Summary:The entropy solutions of the compressible Euler equations satisfy a minimum principle for the specific entropy (Tadmor in Appl Numer Math 2:211–219, 1986). First order schemes such as Godunov-type and Lax-Friedrichs schemes and the second order kinetic schemes (Khobalatte and Perthame in Math Comput 62:119–131, 1994) also satisfy a discrete minimum entropy principle. In this paper, we show an extension of the positivity-preserving high order schemes for the compressible Euler equations in Zhang and Shu (J Comput Phys 229:8918–8934, 2010) and Zhang et al. (J Scientific Comput, in press), to enforce the minimum entropy principle for high order finite volume and discontinuous Galerkin (DG) schemes.