Centrifugal compressor return channel shape optimization using adjoint method
Thesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2013.
Main Author: | |
---|---|
Other Authors: | |
Format: | Thesis |
Language: | eng |
Published: |
Massachusetts Institute of Technology
2014
|
Subjects: | |
Online Access: | http://hdl.handle.net/1721.1/85801 |
_version_ | 1811069007623618560 |
---|---|
author | Guo, Wei, S.M. Massachusetts Institute of Technology |
author2 | Qiqi Wang and Edward M. Greitzer. |
author_facet | Qiqi Wang and Edward M. Greitzer. Guo, Wei, S.M. Massachusetts Institute of Technology |
author_sort | Guo, Wei, S.M. Massachusetts Institute of Technology |
collection | MIT |
description | Thesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2013. |
first_indexed | 2024-09-23T08:04:13Z |
format | Thesis |
id | mit-1721.1/85801 |
institution | Massachusetts Institute of Technology |
language | eng |
last_indexed | 2024-09-23T08:04:13Z |
publishDate | 2014 |
publisher | Massachusetts Institute of Technology |
record_format | dspace |
spelling | mit-1721.1/858012019-04-09T16:27:47Z Centrifugal compressor return channel shape optimization using adjoint method Guo, Wei, S.M. Massachusetts Institute of Technology Qiqi Wang and Edward M. Greitzer. Massachusetts Institute of Technology. Department of Aeronautics and Astronautics. Massachusetts Institute of Technology. Department of Aeronautics and Astronautics. Aeronautics and Astronautics. Thesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2013. Cataloged from PDF version of thesis. Includes bibliographical references (pages 59-60). This thesis describes the construction of an automated gradient-based optimization process using the adjoint method and its application to centrifugal compressor return channel loss reduction. A proper objective function definition and a generalized geometry parametrization and manipulation algorithm were developed, and the appropriate adjoint equations and boundary conditions were derived for internal flow of an axisymmetric incompressible laminar flow. The adjoint-based gradient calculation was then validated against finite-difference calculations and embedded in a quasi- Newton optimization algorithm. An optimal design was proposed, which achieved an approximately 5% performance improvement compared to the baseline design in an incompressible laminar flow. The geometry was assessed in a compressible turbulent flow at the actual Mach number and Reynolds number and found to yield a 11% performance improvement for an axisymmetric channel with a previously optimized geometry. by Wei Guo. S.M. 2014-03-19T15:46:17Z 2014-03-19T15:46:17Z 2013 2013 Thesis http://hdl.handle.net/1721.1/85801 872104516 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 60 pages application/pdf Massachusetts Institute of Technology |
spellingShingle | Aeronautics and Astronautics. Guo, Wei, S.M. Massachusetts Institute of Technology Centrifugal compressor return channel shape optimization using adjoint method |
title | Centrifugal compressor return channel shape optimization using adjoint method |
title_full | Centrifugal compressor return channel shape optimization using adjoint method |
title_fullStr | Centrifugal compressor return channel shape optimization using adjoint method |
title_full_unstemmed | Centrifugal compressor return channel shape optimization using adjoint method |
title_short | Centrifugal compressor return channel shape optimization using adjoint method |
title_sort | centrifugal compressor return channel shape optimization using adjoint method |
topic | Aeronautics and Astronautics. |
url | http://hdl.handle.net/1721.1/85801 |
work_keys_str_mv | AT guoweismmassachusettsinstituteoftechnology centrifugalcompressorreturnchannelshapeoptimizationusingadjointmethod |