High-Frequency Resonant SEPIC Converter With Wide Input and Output Voltage Ranges
This paper presents a resonant single-ended-primary-inductor-converter (SEPIC) converter and control method suitable for high frequency (HF) and very high frequency (VHF) dc-dc power conversion. The proposed design provides high efficiency over a wide input and output voltage range, up-and-down volt...
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Institute of Electrical and Electronics Engineers (IEEE)
2014
|
Online Access: | http://hdl.handle.net/1721.1/86907 https://orcid.org/0000-0002-0746-6191 |
Summary: | This paper presents a resonant single-ended-primary-inductor-converter (SEPIC) converter and control method suitable for high frequency (HF) and very high frequency (VHF) dc-dc power conversion. The proposed design provides high efficiency over a wide input and output voltage range, up-and-down voltage conversion, small size, and excellent transient performance. In addition, a resonant gate drive scheme is presented that provides rapid startup and low-loss at HF and VHF frequencies. The converter regulates the output using an ON-OFF control scheme modulating at a fixed frequency (170 kHz). This control method enables fast transient response and efficient light-load operation while providing controlled spectral characteristics of the input and output waveforms. A hysteretic override technique is also introduced which enables the converter to reject load disturbances with a bandwidth much greater than the modulation frequency, limiting output voltage disturbances to within a fixed value. An experimental prototype has been built and evaluated. The prototype converter, built with two commercial vertical MOSFETs, operates at a fixed switching frequency of 20 MHz, with an input voltage range of 3.6-7.2 V, an output voltage range of 3-9 V, and an output power rating of up to 3 W. The converter achieves higher than 80% efficiency across the entire input voltage range at nominal output voltage and maintains good efficiency across the whole operating range. |
---|