Summary: | For future systems that require one or a small team of operators to supervise a network of automated agents, automated planners are critical since they are faster than humans for path planning and resource allocation in multivariate, dynamic, time-pressured environments. However, such planners
can be brittle and unable to respond to emergent events. Human operators can aid such systems by bringing their knowledge-based reasoning and experience to bear. Given a decentralized task planner and a goal-based operator interface for a network of unmanned vehicles in a search, track, and
neutralize mission, we demonstrate with a human-on-the-loop experiment that humans guiding these decentralized planners improved system performance by up to 50%. However, those tasks that required precise and rapid calculations were not significantly improved with human aid. Thus, there is a shared space in such complex missions for human–automation
collaboration.
|