Design and Experimental Implementation of an Electromagnetic Engine Valve Drive

In conventional internal combustion engines, engine valve displacements are fixed relative to crankshaft position. If these valves were actuated as a variable function of crankshaft angle, significant improvements in fuel economy could be achieved. To this end, a new type of electromagnetic valve dr...

Full description

Bibliographic Details
Main Authors: Parlikar, T.A., Chang, W.S., Qiu, Y.H., Seeman, M.D., Perreault, David J., Kassakian, John G., Keim, Thomas A.
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Format: Article
Language:en_US
Published: Institute of Electrical and Electronics Engineers (IEEE) 2014
Online Access:http://hdl.handle.net/1721.1/86977
https://orcid.org/0000-0002-0746-6191
https://orcid.org/0000-0002-3443-5702
Description
Summary:In conventional internal combustion engines, engine valve displacements are fixed relative to crankshaft position. If these valves were actuated as a variable function of crankshaft angle, significant improvements in fuel economy could be achieved. To this end, a new type of electromagnetic valve drive system (EMVD) for internal combustion engines was more recently proposed. This EMVD incorporates a disk cam with a very desirable nonlinear profile which that functions as a nonlinear mechanical transformer. Modeling and simulation results showed significant advantages of this EMVD over previously designed electromagnetic engine valve drives. In this articles, we describe an experimental implementation of the proposed EMVD, which was developed to confirm these benefits. The EMVD apparatus was designed, constructed, and integrated into a computer-controlled experimental test stand. The experimental results confirm the benefits of using a nonlinear mechanical transformer in a motordriven engine-valve spring system, as seen in the small average power consumption and low valve seating velocity. In addition, a valve transition time sufficient for 6000-rpm engine operation was achieved. The results also suggest ways to improve the EMVD apparatus in the future.