Calibration of an echelle spectrograph with an astro-comb: a laser frequency comb with very high repetition rate
Searches for extrasolar planets using precision radial velocity (PRV) techniques are approaching Earth-like planet sensitivity, however require an improvement of one order of magnitude to identify earth-mass planets in the habitable zone of sun-like stars. A key limitation is spectrograph calibratio...
Main Authors: | , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
SPIE
2014
|
Online Access: | http://hdl.handle.net/1721.1/86990 https://orcid.org/0000-0002-8733-2555 |
Summary: | Searches for extrasolar planets using precision radial velocity (PRV) techniques are approaching Earth-like planet sensitivity, however require an improvement of one order of magnitude to identify earth-mass planets in the habitable zone of sun-like stars. A key limitation is spectrograph calibration. An astro-comb, an octave-spanning laser frequency comb and a Fabry-Pérot cavity, producing evenly spaced frequencies with large wavelength coverage, is a promising tool for improved wavelength calibration. We demonstrate the calibration of a high-resolution astrophysical spectrograph below the 1 m/s level in the 8000-9000 Å and 4200 Å spectral bands. © (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only. |
---|