A threshold for laser-driven linear particle acceleration in unbounded vacuum
We hypothesize that a charged particle in unbounded vacuum can be substantially accelerated by a force linear in the electric field of a propagating electromagnetic wave only if the accelerating field is capable of bringing the particle to a relativistic energy in its initial rest frame during the i...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
American Institute of Physics
2014
|
Online Access: | http://hdl.handle.net/1721.1/86994 https://orcid.org/0000-0002-8733-2555 |
Summary: | We hypothesize that a charged particle in unbounded vacuum can be substantially accelerated by a force linear in the electric field of a propagating electromagnetic wave only if the accelerating field is capable of bringing the particle to a relativistic energy in its initial rest frame during the interaction. We consequently derive a general formula for the acceleration threshold of such schemes and support our conclusion with the results of numerical simulations over a broad range of parameters for different kinds of pulsed laser beams. |
---|