Nonlinear System Modeling, Optimal Cam Design, and Advanced System Control for an Electromechanical Engine Valve Drive
A cam-based shear force-actuated electromechanical valve drive system offering variable valve timing in internal combustion engines was previously proposed and demonstrated. To transform this concept into a competitive commercial product, several major challenges need to addressed, including the red...
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Institute of Electrical and Electronics Engineers (IEEE)
2014
|
Online Access: | http://hdl.handle.net/1721.1/87095 https://orcid.org/0000-0002-0746-6191 https://orcid.org/0000-0002-3443-5702 |
Summary: | A cam-based shear force-actuated electromechanical valve drive system offering variable valve timing in internal combustion engines was previously proposed and demonstrated. To transform this concept into a competitive commercial product, several major challenges need to addressed, including the reduction of power consumption, transition time, and size. As shown in this paper, by using nonlinear system modeling, optimizing cam design, and exploring different control strategies, the power consumption has been reduced from 140 to 49 W (65%), the transition time has been decreased from 3.3 to 2.7 ms (18%), and the actuator torque requirement has been cut from 1.33 to 0.30 N·m (77%). |
---|