Phase locking of a 3.4 THz third-order distributed feedback quantum cascade laser using a room-temperature superlattice harmonic mixer
We report on the phase locking of a 3.4 THz third-order distributed feedback quantum cascade laser (QCL) using a room temperature GaAs/AlAs superlattice diode as both a frequency multiplier and an internal harmonic mixer. A signal-to-noise level of 60 dB is observed in the intermediate frequency sig...
Main Authors: | , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
American Institute of Physics
2014
|
Online Access: | http://hdl.handle.net/1721.1/87113 https://orcid.org/0000-0003-1982-4053 |
Summary: | We report on the phase locking of a 3.4 THz third-order distributed feedback quantum cascade laser (QCL) using a room temperature GaAs/AlAs superlattice diode as both a frequency multiplier and an internal harmonic mixer. A signal-to-noise level of 60 dB is observed in the intermediate frequency signal between the 18th harmonic of a 190.7 GHz reference source and the 3433 GHz QCL. A phase-lock loop with 7 MHz bandwidth results in QCL emission that is 96% locked to the reference source. We characterize the QCL temperature and electrical tuning mechanisms and show that frequency dependence of these mechanisms can prevent phase-locking under certain QCL bias conditions. |
---|