High-resolution whole organ imaging using two-photon tissue cytometry
Three-dimensional (3-D) tissue imaging offers substantial benefits to a wide range of biomedical investigations from cardiovascular biology, diabetes, Alzheimer’s disease to cancer. Two-photon tissue cytometry is a novel technique based on high-speed multiphoton microscopy coupled with automated his...
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
SPIE
2014
|
Online Access: | http://hdl.handle.net/1721.1/87650 https://orcid.org/0000-0003-4698-6488 |
Summary: | Three-dimensional (3-D) tissue imaging offers substantial benefits to a wide range of biomedical investigations from cardiovascular biology, diabetes, Alzheimer’s disease to cancer. Two-photon tissue cytometry is a novel technique based on high-speed multiphoton microscopy coupled with automated histological sectioning, which can quantify tissue morphology and physiology throughout entire organs with subcellular resolution. Furthermore, two-photon tissue cytometry offers all the benefits of fluorescence-based approaches including high specificity and sensitivity and appropriateness for molecular imaging of gene and protein expression. We use two-photon tissue cytometry to image an entire mouse heart at subcellular resolution to quantify the 3-D morphology of cardiac microvasculature and myocyte morphology spanning almost five orders of magnitude in length scales. |
---|