Equilibration of an Atmosphere by Adiabatic Eddy Fluxes

A major question for climate studies is to quantify the role of turbulent eddy fluxes in maintaining the observed atmospheric mean state. Both the equator-to-pole temperature gradient and the static stability of the extratropical atmosphere are set by a balance between these eddy fluxes and the radi...

Full description

Bibliographic Details
Main Authors: Jansen, Malte Friedrich, Ferrari, Raffaele
Other Authors: Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Format: Article
Language:en_US
Published: American Meteorological Society 2014
Online Access:http://hdl.handle.net/1721.1/87782
https://orcid.org/0000-0002-3736-1956
Description
Summary:A major question for climate studies is to quantify the role of turbulent eddy fluxes in maintaining the observed atmospheric mean state. Both the equator-to-pole temperature gradient and the static stability of the extratropical atmosphere are set by a balance between these eddy fluxes and the radiative forcing. Much attention has been paid to the adjustment of the isentropic slope, which relates the static stability and the meridional temperature gradient. It is often argued that the extratropical atmosphere always equilibrates such that isentropes leaving the surface in the subtropics reach the tropopause near the poles. However, recent work challenged this argument. This paper revisits scaling arguments for the equilibrated mean state of a dry atmosphere, which results from a balance between the radiative forcing and the along-isentropic eddy heat flux. These arguments predict weak sensitivity of the isentropic slope to changes in the radiative forcing, consistent with previous results. Large changes can, however, be achieved if other external parameters, such as the size and rotation rate of the planet, are varied. The arguments are also extended to predict both the meridional temperature gradient and the static stability independently. This allows a full characterization of the atmospheric mean state as a function of external parameters.