Growth of climate change commitments from HFC banks and emissions
Chlorofluorocarbons (CFCs) are the primary cause of ozone depletion, and they also contribute to global climate change. With the global phaseout of CFCs and the coming phaseout of hydrochlorofluorocarbons (HCFCs), the substitute hydrofluorocarbons (HFCs) are increasingly used. While CFCs were origin...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Copernicus GmbH on behalf of the European Geosciences Union
2014
|
Online Access: | http://hdl.handle.net/1721.1/88065 https://orcid.org/0000-0002-2020-7581 |
_version_ | 1811074192058089472 |
---|---|
author | Velders, G. J. M. Solomon, Susan Daniel, J. S. |
author2 | Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences |
author_facet | Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences Velders, G. J. M. Solomon, Susan Daniel, J. S. |
author_sort | Velders, G. J. M. |
collection | MIT |
description | Chlorofluorocarbons (CFCs) are the primary cause of ozone depletion, and they also contribute to global climate change. With the global phaseout of CFCs and the coming phaseout of hydrochlorofluorocarbons (HCFCs), the substitute hydrofluorocarbons (HFCs) are increasingly used. While CFCs were originally used mainly in applications such as spray cans and were released within a year after production, concern about the ozone layer led to reductions in rapid-release applications, and the relative importance of slower-release applications grew. HFCs are now mainly used in refrigerators and air conditioners (AC) and are released over years to a decade after production. Their containment in such equipment represents banks, which are building up as production grows. A key finding of our work is that the increases of HFC banks represent a substantial unseen commitment to further radiative forcing of climate change also after production of the chemicals ceases. We show that earlier phaseouts of HFCs would provide greater benefits for climate protection than previously recognized, due to the avoided buildup of the banks. If, for example, HFC production were to be phased out in 2020 instead of 2050, not only could about 91–146 GtCO2-eq of cumulative emission be avoided from 2020 to 2050, but an additional bank of about 39–64 GtCO2-eq could also be avoided in 2050. Choices of later phaseout dates lead to larger commitments to climate change unless growing banks of HFCs from millions of dispersed locations are collected and destroyed. |
first_indexed | 2024-09-23T09:45:24Z |
format | Article |
id | mit-1721.1/88065 |
institution | Massachusetts Institute of Technology |
language | en_US |
last_indexed | 2024-09-23T09:45:24Z |
publishDate | 2014 |
publisher | Copernicus GmbH on behalf of the European Geosciences Union |
record_format | dspace |
spelling | mit-1721.1/880652022-09-30T16:37:06Z Growth of climate change commitments from HFC banks and emissions Velders, G. J. M. Solomon, Susan Daniel, J. S. Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences Solomon, Susan Chlorofluorocarbons (CFCs) are the primary cause of ozone depletion, and they also contribute to global climate change. With the global phaseout of CFCs and the coming phaseout of hydrochlorofluorocarbons (HCFCs), the substitute hydrofluorocarbons (HFCs) are increasingly used. While CFCs were originally used mainly in applications such as spray cans and were released within a year after production, concern about the ozone layer led to reductions in rapid-release applications, and the relative importance of slower-release applications grew. HFCs are now mainly used in refrigerators and air conditioners (AC) and are released over years to a decade after production. Their containment in such equipment represents banks, which are building up as production grows. A key finding of our work is that the increases of HFC banks represent a substantial unseen commitment to further radiative forcing of climate change also after production of the chemicals ceases. We show that earlier phaseouts of HFCs would provide greater benefits for climate protection than previously recognized, due to the avoided buildup of the banks. If, for example, HFC production were to be phased out in 2020 instead of 2050, not only could about 91–146 GtCO2-eq of cumulative emission be avoided from 2020 to 2050, but an additional bank of about 39–64 GtCO2-eq could also be avoided in 2050. Choices of later phaseout dates lead to larger commitments to climate change unless growing banks of HFCs from millions of dispersed locations are collected and destroyed. 2014-06-23T16:39:21Z 2014-06-23T16:39:21Z 2014-05 2014-03 Article http://purl.org/eprint/type/JournalArticle 1680-7324 http://hdl.handle.net/1721.1/88065 Velders, G. J. M., S. Solomon, and J. S. Daniel. “Growth of Climate Change Commitments from HFC Banks and Emissions.” Atmospheric Chemistry and Physics 14, no. 9 (May 12, 2014): 4563–4572. https://orcid.org/0000-0002-2020-7581 en_US http://dx.doi.org/10.5194/acp-14-4563-2014 Atmospheric Chemistry and Physics Creative Commons Attribution http://creativecommons.org/licenses/by/3.0/ application/pdf Copernicus GmbH on behalf of the European Geosciences Union Copernicus Publications |
spellingShingle | Velders, G. J. M. Solomon, Susan Daniel, J. S. Growth of climate change commitments from HFC banks and emissions |
title | Growth of climate change commitments from HFC banks and emissions |
title_full | Growth of climate change commitments from HFC banks and emissions |
title_fullStr | Growth of climate change commitments from HFC banks and emissions |
title_full_unstemmed | Growth of climate change commitments from HFC banks and emissions |
title_short | Growth of climate change commitments from HFC banks and emissions |
title_sort | growth of climate change commitments from hfc banks and emissions |
url | http://hdl.handle.net/1721.1/88065 https://orcid.org/0000-0002-2020-7581 |
work_keys_str_mv | AT veldersgjm growthofclimatechangecommitmentsfromhfcbanksandemissions AT solomonsusan growthofclimatechangecommitmentsfromhfcbanksandemissions AT danieljs growthofclimatechangecommitmentsfromhfcbanksandemissions |