Holographic Vortex Liquids and Superfluid Turbulence

Superfluid turbulence is a fascinating phenomenon for which a satisfactory theoretical framework is lacking. Holographic duality provides a systematic approach to studying such quantum turbulence by mapping the dynamics of a strongly interacting quantum liquid into the dynamics of classical gravity....

Full description

Bibliographic Details
Main Authors: Chesler, Paul Michael, Liu, Hong, Adams, Allan
Other Authors: Massachusetts Institute of Technology. Department of Physics
Format: Article
Language:en_US
Published: American Association for the Advancement of Science (AAAS) 2014
Online Access:http://hdl.handle.net/1721.1/88270
https://orcid.org/0000-0003-0421-4818
https://orcid.org/0000-0002-4911-3183
Description
Summary:Superfluid turbulence is a fascinating phenomenon for which a satisfactory theoretical framework is lacking. Holographic duality provides a systematic approach to studying such quantum turbulence by mapping the dynamics of a strongly interacting quantum liquid into the dynamics of classical gravity. We use this gravitational description to numerically construct turbulent flows in a holographic superfluid in two spatial dimensions. We find that the superfluid kinetic energy spectrum obeys the Kolmogorov Formula scaling law, with energy injected at long wavelengths undergoing a direct cascade to short wavelengths where dissipation by vortex annihilation and vortex drag becomes efficient. This dissipation has a simple gravitational interpretation as energy flux across a black hole event horizon.