Photo-excitation Cascade and Multiple Carrier Generation in Graphene

The conversion of light into free electron–hole pairs constitutes the key process in the fields of photodetection and photovoltaics. The efficiency of this process depends on the competition of different relaxation pathways and can be greatly enhanced when photoexcited carriers do not lose energy as...

Full description

Bibliographic Details
Main Authors: Tielrooij, K. J., Jensen, S. A., Centeno, A., Pesquera, A., Zurutuza Elorza, A., Bonn, M., Koppens, Frank Henricus Louis, Song, Justin Chien Wen, Levitov, Leonid
Other Authors: Massachusetts Institute of Technology. Department of Physics
Format: Article
Language:en_US
Published: Nature Publishing Group 2014
Online Access:http://hdl.handle.net/1721.1/88511
https://orcid.org/0000-0002-4268-731X
_version_ 1811097437761175552
author Tielrooij, K. J.
Jensen, S. A.
Centeno, A.
Pesquera, A.
Zurutuza Elorza, A.
Bonn, M.
Koppens, Frank Henricus Louis
Song, Justin Chien Wen
Levitov, Leonid
author2 Massachusetts Institute of Technology. Department of Physics
author_facet Massachusetts Institute of Technology. Department of Physics
Tielrooij, K. J.
Jensen, S. A.
Centeno, A.
Pesquera, A.
Zurutuza Elorza, A.
Bonn, M.
Koppens, Frank Henricus Louis
Song, Justin Chien Wen
Levitov, Leonid
author_sort Tielrooij, K. J.
collection MIT
description The conversion of light into free electron–hole pairs constitutes the key process in the fields of photodetection and photovoltaics. The efficiency of this process depends on the competition of different relaxation pathways and can be greatly enhanced when photoexcited carriers do not lose energy as heat, but instead transfer their excess energy into the production of additional electron–hole pairs through carrier–carrier scattering processes. Here we use optical pump–terahertz probe measurements to probe different pathways contributing to the ultrafast energy relaxation of photoexcited carriers. Our results indicate that carrier–carrier scattering is highly efficient, prevailing over optical-phonon emission in a wide range of photon wavelengths and leading to the production of secondary hot electrons originating from the conduction band. As hot electrons in graphene can drive currents, multiple hot-carrier generation makes graphene a promising material for highly efficient broadband extraction of light energy into electronic degrees of freedom, enabling high-efficiency optoelectronic applications.
first_indexed 2024-09-23T16:59:32Z
format Article
id mit-1721.1/88511
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T16:59:32Z
publishDate 2014
publisher Nature Publishing Group
record_format dspace
spelling mit-1721.1/885112022-10-03T09:37:23Z Photo-excitation Cascade and Multiple Carrier Generation in Graphene Photoexcitation cascade and multiple hot-carrier generation in graphene Tielrooij, K. J. Jensen, S. A. Centeno, A. Pesquera, A. Zurutuza Elorza, A. Bonn, M. Koppens, Frank Henricus Louis Song, Justin Chien Wen Levitov, Leonid Massachusetts Institute of Technology. Department of Physics Song, Justin Chien Wen Levitov, Leonid The conversion of light into free electron–hole pairs constitutes the key process in the fields of photodetection and photovoltaics. The efficiency of this process depends on the competition of different relaxation pathways and can be greatly enhanced when photoexcited carriers do not lose energy as heat, but instead transfer their excess energy into the production of additional electron–hole pairs through carrier–carrier scattering processes. Here we use optical pump–terahertz probe measurements to probe different pathways contributing to the ultrafast energy relaxation of photoexcited carriers. Our results indicate that carrier–carrier scattering is highly efficient, prevailing over optical-phonon emission in a wide range of photon wavelengths and leading to the production of secondary hot electrons originating from the conduction band. As hot electrons in graphene can drive currents, multiple hot-carrier generation makes graphene a promising material for highly efficient broadband extraction of light energy into electronic degrees of freedom, enabling high-efficiency optoelectronic applications. United States. Office of Naval Research (Grant N00014-09-1-0724) 2014-07-28T20:17:38Z 2014-07-28T20:17:38Z 2013-02 2012-10 Article http://purl.org/eprint/type/JournalArticle 1745-2473 1745-2481 http://hdl.handle.net/1721.1/88511 Tielrooij, K. J., J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Zurutuza Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens. “Photoexcitation Cascade and Multiple Hot-Carrier Generation in Graphene.” Nat Phys 9, no. 4 (February 24, 2013): 248–252. https://orcid.org/0000-0002-4268-731X en_US http://dx.doi.org/10.1038/nphys2564 Nature Physics Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. application/pdf Nature Publishing Group arXiv
spellingShingle Tielrooij, K. J.
Jensen, S. A.
Centeno, A.
Pesquera, A.
Zurutuza Elorza, A.
Bonn, M.
Koppens, Frank Henricus Louis
Song, Justin Chien Wen
Levitov, Leonid
Photo-excitation Cascade and Multiple Carrier Generation in Graphene
title Photo-excitation Cascade and Multiple Carrier Generation in Graphene
title_full Photo-excitation Cascade and Multiple Carrier Generation in Graphene
title_fullStr Photo-excitation Cascade and Multiple Carrier Generation in Graphene
title_full_unstemmed Photo-excitation Cascade and Multiple Carrier Generation in Graphene
title_short Photo-excitation Cascade and Multiple Carrier Generation in Graphene
title_sort photo excitation cascade and multiple carrier generation in graphene
url http://hdl.handle.net/1721.1/88511
https://orcid.org/0000-0002-4268-731X
work_keys_str_mv AT tielrooijkj photoexcitationcascadeandmultiplecarriergenerationingraphene
AT jensensa photoexcitationcascadeandmultiplecarriergenerationingraphene
AT centenoa photoexcitationcascadeandmultiplecarriergenerationingraphene
AT pesqueraa photoexcitationcascadeandmultiplecarriergenerationingraphene
AT zurutuzaelorzaa photoexcitationcascadeandmultiplecarriergenerationingraphene
AT bonnm photoexcitationcascadeandmultiplecarriergenerationingraphene
AT koppensfrankhenricuslouis photoexcitationcascadeandmultiplecarriergenerationingraphene
AT songjustinchienwen photoexcitationcascadeandmultiplecarriergenerationingraphene
AT levitovleonid photoexcitationcascadeandmultiplecarriergenerationingraphene
AT tielrooijkj photoexcitationcascadeandmultiplehotcarriergenerationingraphene
AT jensensa photoexcitationcascadeandmultiplehotcarriergenerationingraphene
AT centenoa photoexcitationcascadeandmultiplehotcarriergenerationingraphene
AT pesqueraa photoexcitationcascadeandmultiplehotcarriergenerationingraphene
AT zurutuzaelorzaa photoexcitationcascadeandmultiplehotcarriergenerationingraphene
AT bonnm photoexcitationcascadeandmultiplehotcarriergenerationingraphene
AT koppensfrankhenricuslouis photoexcitationcascadeandmultiplehotcarriergenerationingraphene
AT songjustinchienwen photoexcitationcascadeandmultiplehotcarriergenerationingraphene
AT levitovleonid photoexcitationcascadeandmultiplehotcarriergenerationingraphene