A Coarse-Grained Molecular Model for Glycosaminoglycans: Application to Chondroitin, Chondroitin Sulfate, and Hyaluronic Acid
A coarse-grained molecular model is presented for the study of the equilibrium conformation and titration behavior of chondroitin (CH), chondroitin sulfate (CS), and hyaluronic acid (HA)—glycosaminoglycans (GAGs) that play a central role in determining the structure and biomechanical properties of t...
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Elsevier
2014
|
Online Access: | http://hdl.handle.net/1721.1/88693 https://orcid.org/0000-0002-3320-3969 https://orcid.org/0000-0002-6199-6855 https://orcid.org/0000-0002-4942-3456 https://orcid.org/0000-0001-8137-1732 |
_version_ | 1826200260907630592 |
---|---|
author | Bathe, Mark Rutledge, Gregory C. Grodzinsky, Alan J. Tidor, Bruce |
author2 | Massachusetts Institute of Technology. Department of Biological Engineering |
author_facet | Massachusetts Institute of Technology. Department of Biological Engineering Bathe, Mark Rutledge, Gregory C. Grodzinsky, Alan J. Tidor, Bruce |
author_sort | Bathe, Mark |
collection | MIT |
description | A coarse-grained molecular model is presented for the study of the equilibrium conformation and titration behavior of chondroitin (CH), chondroitin sulfate (CS), and hyaluronic acid (HA)—glycosaminoglycans (GAGs) that play a central role in determining the structure and biomechanical properties of the extracellular matrix of articular cartilage. Systematic coarse-graining from an all-atom description of the disaccharide building blocks retains the polyelectrolytes’ specific chemical properties while enabling the simulation of high molecular weight chains that are inaccessible to all-atom representations. Results are presented for the characteristic ratio, the ionic strength-dependent persistence length, the pH-dependent expansion factor for the end-to-end distance, and the titration behavior of the GAGs. Although 4-sulfation of the N-acetyl-D-galactosamine residue is found to increase significantly the intrinsic stiffness of CH with respect to 6-sulfation, only small differences in the titration behavior of the two sulfated forms of CH are found. Persistence length expressions are presented for each type of GAG using a macroscopic (wormlike chain-based) and a microscopic (bond vector correlation-based) definition. Model predictions agree quantitatively with experimental conformation and titration measurements, which support use of the model in the investigation of equilibrium solution properties of GAGs. |
first_indexed | 2024-09-23T11:33:45Z |
format | Article |
id | mit-1721.1/88693 |
institution | Massachusetts Institute of Technology |
language | en_US |
last_indexed | 2024-09-23T11:33:45Z |
publishDate | 2014 |
publisher | Elsevier |
record_format | dspace |
spelling | mit-1721.1/886932022-09-27T20:21:00Z A Coarse-Grained Molecular Model for Glycosaminoglycans: Application to Chondroitin, Chondroitin Sulfate, and Hyaluronic Acid Bathe, Mark Rutledge, Gregory C. Grodzinsky, Alan J. Tidor, Bruce Massachusetts Institute of Technology. Department of Biological Engineering Massachusetts Institute of Technology. Department of Chemical Engineering Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology. Department of Mechanical Engineering Bathe, Mark Rutledge, Gregory C. Grodzinsky, Alan J. Tidor, Bruce A coarse-grained molecular model is presented for the study of the equilibrium conformation and titration behavior of chondroitin (CH), chondroitin sulfate (CS), and hyaluronic acid (HA)—glycosaminoglycans (GAGs) that play a central role in determining the structure and biomechanical properties of the extracellular matrix of articular cartilage. Systematic coarse-graining from an all-atom description of the disaccharide building blocks retains the polyelectrolytes’ specific chemical properties while enabling the simulation of high molecular weight chains that are inaccessible to all-atom representations. Results are presented for the characteristic ratio, the ionic strength-dependent persistence length, the pH-dependent expansion factor for the end-to-end distance, and the titration behavior of the GAGs. Although 4-sulfation of the N-acetyl-D-galactosamine residue is found to increase significantly the intrinsic stiffness of CH with respect to 6-sulfation, only small differences in the titration behavior of the two sulfated forms of CH are found. Persistence length expressions are presented for each type of GAG using a macroscopic (wormlike chain-based) and a microscopic (bond vector correlation-based) definition. Model predictions agree quantitatively with experimental conformation and titration measurements, which support use of the model in the investigation of equilibrium solution properties of GAGs. American Society for Engineering Education. National Defense Science and Engineering Graduate Fellowship National Institutes of Health (U.S.) (GM065418) National Institutes of Health (U.S.) (AR33236) 2014-08-13T13:43:34Z 2014-08-13T13:43:34Z 2005-06 2005-01 Article http://purl.org/eprint/type/JournalArticle 00063495 1542-0086 http://hdl.handle.net/1721.1/88693 Bathe, Mark, Gregory C. Rutledge, Alan J. Grodzinsky, and Bruce Tidor. "A Coarse-Grained Molecular Model for Glycosaminoglycans: Application to Chondroitin, Chondroitin Sulfate, and Hyaluronic Acid." Biophysical Journal Biophysical Journal Volume 88, Issue 6, June 2005: 3870–3887. © 2005 The Biophysical Society https://orcid.org/0000-0002-3320-3969 https://orcid.org/0000-0002-6199-6855 https://orcid.org/0000-0002-4942-3456 https://orcid.org/0000-0001-8137-1732 en_US http://dx.doi.org/10.1529/biophysj.104.058800 Biophysical Journal Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. application/pdf Elsevier Elsevier Open Archive |
spellingShingle | Bathe, Mark Rutledge, Gregory C. Grodzinsky, Alan J. Tidor, Bruce A Coarse-Grained Molecular Model for Glycosaminoglycans: Application to Chondroitin, Chondroitin Sulfate, and Hyaluronic Acid |
title | A Coarse-Grained Molecular Model for Glycosaminoglycans: Application to Chondroitin, Chondroitin Sulfate, and Hyaluronic Acid |
title_full | A Coarse-Grained Molecular Model for Glycosaminoglycans: Application to Chondroitin, Chondroitin Sulfate, and Hyaluronic Acid |
title_fullStr | A Coarse-Grained Molecular Model for Glycosaminoglycans: Application to Chondroitin, Chondroitin Sulfate, and Hyaluronic Acid |
title_full_unstemmed | A Coarse-Grained Molecular Model for Glycosaminoglycans: Application to Chondroitin, Chondroitin Sulfate, and Hyaluronic Acid |
title_short | A Coarse-Grained Molecular Model for Glycosaminoglycans: Application to Chondroitin, Chondroitin Sulfate, and Hyaluronic Acid |
title_sort | coarse grained molecular model for glycosaminoglycans application to chondroitin chondroitin sulfate and hyaluronic acid |
url | http://hdl.handle.net/1721.1/88693 https://orcid.org/0000-0002-3320-3969 https://orcid.org/0000-0002-6199-6855 https://orcid.org/0000-0002-4942-3456 https://orcid.org/0000-0001-8137-1732 |
work_keys_str_mv | AT bathemark acoarsegrainedmolecularmodelforglycosaminoglycansapplicationtochondroitinchondroitinsulfateandhyaluronicacid AT rutledgegregoryc acoarsegrainedmolecularmodelforglycosaminoglycansapplicationtochondroitinchondroitinsulfateandhyaluronicacid AT grodzinskyalanj acoarsegrainedmolecularmodelforglycosaminoglycansapplicationtochondroitinchondroitinsulfateandhyaluronicacid AT tidorbruce acoarsegrainedmolecularmodelforglycosaminoglycansapplicationtochondroitinchondroitinsulfateandhyaluronicacid AT bathemark coarsegrainedmolecularmodelforglycosaminoglycansapplicationtochondroitinchondroitinsulfateandhyaluronicacid AT rutledgegregoryc coarsegrainedmolecularmodelforglycosaminoglycansapplicationtochondroitinchondroitinsulfateandhyaluronicacid AT grodzinskyalanj coarsegrainedmolecularmodelforglycosaminoglycansapplicationtochondroitinchondroitinsulfateandhyaluronicacid AT tidorbruce coarsegrainedmolecularmodelforglycosaminoglycansapplicationtochondroitinchondroitinsulfateandhyaluronicacid |