A Coarse-Grained Molecular Model for Glycosaminoglycans: Application to Chondroitin, Chondroitin Sulfate, and Hyaluronic Acid

A coarse-grained molecular model is presented for the study of the equilibrium conformation and titration behavior of chondroitin (CH), chondroitin sulfate (CS), and hyaluronic acid (HA)—glycosaminoglycans (GAGs) that play a central role in determining the structure and biomechanical properties of t...

Full description

Bibliographic Details
Main Authors: Bathe, Mark, Rutledge, Gregory C., Grodzinsky, Alan J., Tidor, Bruce
Other Authors: Massachusetts Institute of Technology. Department of Biological Engineering
Format: Article
Language:en_US
Published: Elsevier 2014
Online Access:http://hdl.handle.net/1721.1/88693
https://orcid.org/0000-0002-3320-3969
https://orcid.org/0000-0002-6199-6855
https://orcid.org/0000-0002-4942-3456
https://orcid.org/0000-0001-8137-1732
_version_ 1826200260907630592
author Bathe, Mark
Rutledge, Gregory C.
Grodzinsky, Alan J.
Tidor, Bruce
author2 Massachusetts Institute of Technology. Department of Biological Engineering
author_facet Massachusetts Institute of Technology. Department of Biological Engineering
Bathe, Mark
Rutledge, Gregory C.
Grodzinsky, Alan J.
Tidor, Bruce
author_sort Bathe, Mark
collection MIT
description A coarse-grained molecular model is presented for the study of the equilibrium conformation and titration behavior of chondroitin (CH), chondroitin sulfate (CS), and hyaluronic acid (HA)—glycosaminoglycans (GAGs) that play a central role in determining the structure and biomechanical properties of the extracellular matrix of articular cartilage. Systematic coarse-graining from an all-atom description of the disaccharide building blocks retains the polyelectrolytes’ specific chemical properties while enabling the simulation of high molecular weight chains that are inaccessible to all-atom representations. Results are presented for the characteristic ratio, the ionic strength-dependent persistence length, the pH-dependent expansion factor for the end-to-end distance, and the titration behavior of the GAGs. Although 4-sulfation of the N-acetyl-D-galactosamine residue is found to increase significantly the intrinsic stiffness of CH with respect to 6-sulfation, only small differences in the titration behavior of the two sulfated forms of CH are found. Persistence length expressions are presented for each type of GAG using a macroscopic (wormlike chain-based) and a microscopic (bond vector correlation-based) definition. Model predictions agree quantitatively with experimental conformation and titration measurements, which support use of the model in the investigation of equilibrium solution properties of GAGs.
first_indexed 2024-09-23T11:33:45Z
format Article
id mit-1721.1/88693
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T11:33:45Z
publishDate 2014
publisher Elsevier
record_format dspace
spelling mit-1721.1/886932022-09-27T20:21:00Z A Coarse-Grained Molecular Model for Glycosaminoglycans: Application to Chondroitin, Chondroitin Sulfate, and Hyaluronic Acid Bathe, Mark Rutledge, Gregory C. Grodzinsky, Alan J. Tidor, Bruce Massachusetts Institute of Technology. Department of Biological Engineering Massachusetts Institute of Technology. Department of Chemical Engineering Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology. Department of Mechanical Engineering Bathe, Mark Rutledge, Gregory C. Grodzinsky, Alan J. Tidor, Bruce A coarse-grained molecular model is presented for the study of the equilibrium conformation and titration behavior of chondroitin (CH), chondroitin sulfate (CS), and hyaluronic acid (HA)—glycosaminoglycans (GAGs) that play a central role in determining the structure and biomechanical properties of the extracellular matrix of articular cartilage. Systematic coarse-graining from an all-atom description of the disaccharide building blocks retains the polyelectrolytes’ specific chemical properties while enabling the simulation of high molecular weight chains that are inaccessible to all-atom representations. Results are presented for the characteristic ratio, the ionic strength-dependent persistence length, the pH-dependent expansion factor for the end-to-end distance, and the titration behavior of the GAGs. Although 4-sulfation of the N-acetyl-D-galactosamine residue is found to increase significantly the intrinsic stiffness of CH with respect to 6-sulfation, only small differences in the titration behavior of the two sulfated forms of CH are found. Persistence length expressions are presented for each type of GAG using a macroscopic (wormlike chain-based) and a microscopic (bond vector correlation-based) definition. Model predictions agree quantitatively with experimental conformation and titration measurements, which support use of the model in the investigation of equilibrium solution properties of GAGs. American Society for Engineering Education. National Defense Science and Engineering Graduate Fellowship National Institutes of Health (U.S.) (GM065418) National Institutes of Health (U.S.) (AR33236) 2014-08-13T13:43:34Z 2014-08-13T13:43:34Z 2005-06 2005-01 Article http://purl.org/eprint/type/JournalArticle 00063495 1542-0086 http://hdl.handle.net/1721.1/88693 Bathe, Mark, Gregory C. Rutledge, Alan J. Grodzinsky, and Bruce Tidor. "A Coarse-Grained Molecular Model for Glycosaminoglycans: Application to Chondroitin, Chondroitin Sulfate, and Hyaluronic Acid." Biophysical Journal Biophysical Journal Volume 88, Issue 6, June 2005: 3870–3887. © 2005 The Biophysical Society https://orcid.org/0000-0002-3320-3969 https://orcid.org/0000-0002-6199-6855 https://orcid.org/0000-0002-4942-3456 https://orcid.org/0000-0001-8137-1732 en_US http://dx.doi.org/10.1529/biophysj.104.058800 Biophysical Journal Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. application/pdf Elsevier Elsevier Open Archive
spellingShingle Bathe, Mark
Rutledge, Gregory C.
Grodzinsky, Alan J.
Tidor, Bruce
A Coarse-Grained Molecular Model for Glycosaminoglycans: Application to Chondroitin, Chondroitin Sulfate, and Hyaluronic Acid
title A Coarse-Grained Molecular Model for Glycosaminoglycans: Application to Chondroitin, Chondroitin Sulfate, and Hyaluronic Acid
title_full A Coarse-Grained Molecular Model for Glycosaminoglycans: Application to Chondroitin, Chondroitin Sulfate, and Hyaluronic Acid
title_fullStr A Coarse-Grained Molecular Model for Glycosaminoglycans: Application to Chondroitin, Chondroitin Sulfate, and Hyaluronic Acid
title_full_unstemmed A Coarse-Grained Molecular Model for Glycosaminoglycans: Application to Chondroitin, Chondroitin Sulfate, and Hyaluronic Acid
title_short A Coarse-Grained Molecular Model for Glycosaminoglycans: Application to Chondroitin, Chondroitin Sulfate, and Hyaluronic Acid
title_sort coarse grained molecular model for glycosaminoglycans application to chondroitin chondroitin sulfate and hyaluronic acid
url http://hdl.handle.net/1721.1/88693
https://orcid.org/0000-0002-3320-3969
https://orcid.org/0000-0002-6199-6855
https://orcid.org/0000-0002-4942-3456
https://orcid.org/0000-0001-8137-1732
work_keys_str_mv AT bathemark acoarsegrainedmolecularmodelforglycosaminoglycansapplicationtochondroitinchondroitinsulfateandhyaluronicacid
AT rutledgegregoryc acoarsegrainedmolecularmodelforglycosaminoglycansapplicationtochondroitinchondroitinsulfateandhyaluronicacid
AT grodzinskyalanj acoarsegrainedmolecularmodelforglycosaminoglycansapplicationtochondroitinchondroitinsulfateandhyaluronicacid
AT tidorbruce acoarsegrainedmolecularmodelforglycosaminoglycansapplicationtochondroitinchondroitinsulfateandhyaluronicacid
AT bathemark coarsegrainedmolecularmodelforglycosaminoglycansapplicationtochondroitinchondroitinsulfateandhyaluronicacid
AT rutledgegregoryc coarsegrainedmolecularmodelforglycosaminoglycansapplicationtochondroitinchondroitinsulfateandhyaluronicacid
AT grodzinskyalanj coarsegrainedmolecularmodelforglycosaminoglycansapplicationtochondroitinchondroitinsulfateandhyaluronicacid
AT tidorbruce coarsegrainedmolecularmodelforglycosaminoglycansapplicationtochondroitinchondroitinsulfateandhyaluronicacid