Minimum thermal conductivity in superlattices: A first-principles formalism

The thermal conductivity of silicon-germanium superlattices is computed from density-functional perturbation theory using relaxation times that include both anharmonic and interface roughness effects. A decrease in the group velocity of low-frequency phonons in addition to the interface-disorder-ind...

Full description

Bibliographic Details
Main Authors: Garg, Jivtesh, Chen, Gang
Other Authors: Massachusetts Institute of Technology. Department of Mechanical Engineering
Format: Article
Language:en_US
Published: American Physical Society 2014
Online Access:http://hdl.handle.net/1721.1/88719
https://orcid.org/0000-0002-3968-8530
Description
Summary:The thermal conductivity of silicon-germanium superlattices is computed from density-functional perturbation theory using relaxation times that include both anharmonic and interface roughness effects. A decrease in the group velocity of low-frequency phonons in addition to the interface-disorder-induced scattering of high-frequency phonons drives the superlattice thermal conductivity to below the alloy limit. At short periods, interplay between decrease in group velocity and increase in phonon lifetimes with increase in superlattice period leads to a minimum in the cross-plane thermal conductivity. Increasing the mass mismatch between the constituent materials in the superlattice further lowers the thermal conductivity below the alloy limit, pointing to avenues for higher efficiency thermoelectric materials.