Electron-electron interactions and plasmon dispersion in graphene
Plasmons in two-dimensional electron systems with nonparabolic bands, such as graphene, feature strong dependence on electron-electron interactions. We use a many-body approach to relate plasmon dispersion at long wavelengths to Landau Fermi-liquid interactions and quasiparticle velocity. An identic...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
American Physical Society
2014
|
Online Access: | http://hdl.handle.net/1721.1/88762 https://orcid.org/0000-0002-4268-731X |
Summary: | Plasmons in two-dimensional electron systems with nonparabolic bands, such as graphene, feature strong dependence on electron-electron interactions. We use a many-body approach to relate plasmon dispersion at long wavelengths to Landau Fermi-liquid interactions and quasiparticle velocity. An identical renormalization is shown to arise for the magnetoplasmon resonance. For a model with N ≫ 1 fermion species, this approach predicts a power-law dependence for plasmon frequency vs carrier concentration, valid in a wide range of doping densities, both high and low. Gate tunability of plasmons in graphene can be exploited to directly probe the effects of electron-electron interaction. |
---|