Gapped symmetry preserving surface state for the electron topological insulator

It is well known that the three-dimensional (3D) electronic topological insulator (TI) with charge-conservation and time-reversal symmetry cannot have a trivial insulating surface that preserves symmetry. It is often implicitly assumed that if the TI surface preserves both symmetries then it must be...

Full description

Bibliographic Details
Main Authors: Wang, Chong, Potter, Andrew C., Todadri, Senthil
Other Authors: Massachusetts Institute of Technology. Department of Physics
Format: Article
Language:en_US
Published: American Physical Society 2014
Online Access:http://hdl.handle.net/1721.1/88919
https://orcid.org/0000-0003-4203-4148
https://orcid.org/0000-0001-7004-9609
Description
Summary:It is well known that the three-dimensional (3D) electronic topological insulator (TI) with charge-conservation and time-reversal symmetry cannot have a trivial insulating surface that preserves symmetry. It is often implicitly assumed that if the TI surface preserves both symmetries then it must be gapless. Here we show that it is possible for the TI surface to be both gapped and symmetry preserving, at the expense of having surface-topological order. In contrast to analogous bosonic topological insulators, this symmetric surface topological order is intrinsically non-Abelian. We show that the surface-topological order provides a complete nonperturbative definition of the electron TI that transcends a free-particle band-structure picture, and could provide a useful perspective for studying strongly correlated topological Mott insulators.