Relativistic effects in two-particle emission for electron and neutrino reactions
Two-particle two-hole contributions to electroweak response functions are computed in a fully relativistic Fermi gas, assuming that the electroweak current matrix elements are independent of the kinematics. We analyze the genuine kinematical and relativistic effects before including a realistic meso...
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
American Physical Society
2014
|
Online Access: | http://hdl.handle.net/1721.1/88967 https://orcid.org/0000-0002-3524-1432 |
Summary: | Two-particle two-hole contributions to electroweak response functions are computed in a fully relativistic Fermi gas, assuming that the electroweak current matrix elements are independent of the kinematics. We analyze the genuine kinematical and relativistic effects before including a realistic meson-exchange current operator. This allows one to study the mathematical properties of the nontrivial seven-dimensional integrals appearing in the calculation and to design an optimal numerical procedure to reduce the computation time. This is required for practical applications to charged-current neutrino scattering experiments, in which an additional integral over the neutrino flux is performed. Finally, we examine the viability of this model to compute the electroweak two-particle–two-hole response functions. |
---|