A decomposition approach for commodity pickup and delivery with time-windows under uncertainty
We consider a special class of large-scale, network-based, resource allocation problems under uncertainty, namely that of multi-commodity flows with time-windows under uncertainty. In this class, we focus on problems involving commodity pickup and delivery with time-windows. Our work examines method...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Springer-Verlag
2014
|
Online Access: | http://hdl.handle.net/1721.1/89058 https://orcid.org/0000-0003-2431-2706 |
_version_ | 1826201631154241536 |
---|---|
author | Marla, Lavanya Barnhart, Cynthia Biyani, Varun |
author2 | delete |
author_facet | delete Marla, Lavanya Barnhart, Cynthia Biyani, Varun |
author_sort | Marla, Lavanya |
collection | MIT |
description | We consider a special class of large-scale, network-based, resource allocation problems under uncertainty, namely that of multi-commodity flows with time-windows under uncertainty. In this class, we focus on problems involving commodity pickup and delivery with time-windows. Our work examines methods of proactive planning, that is, robust plan generation to protect against future uncertainty. By a priori modeling uncertainties in data corresponding to service times, resource availability, supplies and demands, we generate solutions that are more robust operationally, that is, more likely to be executed or easier to repair when disrupted. We propose a novel modeling and solution framework involving a decomposition scheme that separates problems into a routing master problem and Scheduling Sub-Problems; and iterates to find the optimal solution. Uncertainty is captured in part by the master problem and in part by the Scheduling Sub-Problem. We present proof-of-concept for our approach using real data involving routing and scheduling for a large shipment carrier’s ground network, and demonstrate the improved robustness of solutions from our approach. |
first_indexed | 2024-09-23T11:54:41Z |
format | Article |
id | mit-1721.1/89058 |
institution | Massachusetts Institute of Technology |
language | en_US |
last_indexed | 2024-09-23T11:54:41Z |
publishDate | 2014 |
publisher | Springer-Verlag |
record_format | dspace |
spelling | mit-1721.1/890582022-10-01T06:52:39Z A decomposition approach for commodity pickup and delivery with time-windows under uncertainty Marla, Lavanya Barnhart, Cynthia Biyani, Varun delete Massachusetts Institute of Technology. Department of Civil and Environmental Engineering Massachusetts Institute of Technology. Operations Research Center Barnhart, Cynthia We consider a special class of large-scale, network-based, resource allocation problems under uncertainty, namely that of multi-commodity flows with time-windows under uncertainty. In this class, we focus on problems involving commodity pickup and delivery with time-windows. Our work examines methods of proactive planning, that is, robust plan generation to protect against future uncertainty. By a priori modeling uncertainties in data corresponding to service times, resource availability, supplies and demands, we generate solutions that are more robust operationally, that is, more likely to be executed or easier to repair when disrupted. We propose a novel modeling and solution framework involving a decomposition scheme that separates problems into a routing master problem and Scheduling Sub-Problems; and iterates to find the optimal solution. Uncertainty is captured in part by the master problem and in part by the Scheduling Sub-Problem. We present proof-of-concept for our approach using real data involving routing and scheduling for a large shipment carrier’s ground network, and demonstrate the improved robustness of solutions from our approach. 2014-08-26T15:14:20Z 2014-08-26T15:14:20Z 2013-02 2011-11 Article http://purl.org/eprint/type/JournalArticle 1094-6136 1099-1425 http://hdl.handle.net/1721.1/89058 Marla, Lavanya, Cynthia Barnhart, and Varun Biyani. “A Decomposition Approach for Commodity Pickup and Delivery with Time-Windows Under Uncertainty.” Journal of Scheduling (February 15, 2013). https://orcid.org/0000-0003-2431-2706 en_US http://dx.doi.org/10.1007/s10951-013-0317-1 Journal of Scheduling Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf Springer-Verlag Other univ. web domain |
spellingShingle | Marla, Lavanya Barnhart, Cynthia Biyani, Varun A decomposition approach for commodity pickup and delivery with time-windows under uncertainty |
title | A decomposition approach for commodity pickup and delivery with time-windows under uncertainty |
title_full | A decomposition approach for commodity pickup and delivery with time-windows under uncertainty |
title_fullStr | A decomposition approach for commodity pickup and delivery with time-windows under uncertainty |
title_full_unstemmed | A decomposition approach for commodity pickup and delivery with time-windows under uncertainty |
title_short | A decomposition approach for commodity pickup and delivery with time-windows under uncertainty |
title_sort | decomposition approach for commodity pickup and delivery with time windows under uncertainty |
url | http://hdl.handle.net/1721.1/89058 https://orcid.org/0000-0003-2431-2706 |
work_keys_str_mv | AT marlalavanya adecompositionapproachforcommoditypickupanddeliverywithtimewindowsunderuncertainty AT barnhartcynthia adecompositionapproachforcommoditypickupanddeliverywithtimewindowsunderuncertainty AT biyanivarun adecompositionapproachforcommoditypickupanddeliverywithtimewindowsunderuncertainty AT marlalavanya decompositionapproachforcommoditypickupanddeliverywithtimewindowsunderuncertainty AT barnhartcynthia decompositionapproachforcommoditypickupanddeliverywithtimewindowsunderuncertainty AT biyanivarun decompositionapproachforcommoditypickupanddeliverywithtimewindowsunderuncertainty |