Glycomics-based analysis of chicken red blood cells provides insight into the selectivity of the viral agglutination assay
Agglutination of red blood cells (RBCs), including chicken RBCs (cRBCs), has been used extensively to estimate viral titer, to screen glycan-receptor binding preference, and to assess the protective response of vaccines. Although this assay enjoys widespread use, some virus strains do not agglutinat...
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
John Wiley & Sons, Inc
2014
|
Online Access: | http://hdl.handle.net/1721.1/89155 https://orcid.org/0000-0002-1288-9965 https://orcid.org/0000-0001-9344-0205 https://orcid.org/0000-0002-2085-7840 |
Summary: | Agglutination of red blood cells (RBCs), including chicken RBCs (cRBCs), has been used extensively to estimate viral titer, to screen glycan-receptor binding preference, and to assess the protective response of vaccines. Although this assay enjoys widespread use, some virus strains do not agglutinate RBCs. To address these underlying issues and to increase the usefulness of cRBCs as tools for studying viruses, such as influenza, we analyzed the cell surface N-glycans of cRBCs. On the basis of the results obtained from complementary analytical strategies, including MS, 1D and 2D-NMR spectroscopy, exoglycosidase digestions, and HPLC profiling, we report the major glycan structures present on cRBCs. By comparing the glycan structures of cBRCs with those of representative human upper respiratory cells, we offer a possible explanation for the fact that certain influenza strains do not agglutinate cRBCs, using specific human-adapted influenza hemagglutinins as examples. Finally, recent understanding of the role of various glycan structures in high affinity binding to influenza hemagglutinins provides context to our findings. These results illustrate that the field of glycomics can provide important information with respect to the experimental systems used to characterize, detect and study viruses. |
---|