Hurwitz Equivalence in Dihedral Groups
In this paper we determine the orbits of the braid group B[subscript n] action on G[superscript n] when G is a dihedral group and for any T ∈ G[superscript n]. We prove that the following invariants serve as necessary and sufficient conditions for Hurwitz equivalence. They are: the product of its en...
Main Author: | |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Electronic Journal of Combinatorics
2014
|
Online Access: | http://hdl.handle.net/1721.1/89794 |
Summary: | In this paper we determine the orbits of the braid group B[subscript n] action on G[superscript n] when G is a dihedral group and for any T ∈ G[superscript n]. We prove that the following invariants serve as necessary and sufficient conditions for Hurwitz equivalence. They are: the product of its entries, the subgroup generated by its entries, and the number of times each conjugacy class (in the subgroup generated by its entries) is represented in T. |
---|