On the construction of some capacity-approaching coding schemes

Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2000.

Bibliographic Details
Main Author: Chung, Sae-Young, 1967-
Other Authors: G. David Forney, Jr.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2005
Subjects:
Online Access:http://hdl.handle.net/1721.1/8981
_version_ 1811087791211151360
author Chung, Sae-Young, 1967-
author2 G. David Forney, Jr.
author_facet G. David Forney, Jr.
Chung, Sae-Young, 1967-
author_sort Chung, Sae-Young, 1967-
collection MIT
description Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2000.
first_indexed 2024-09-23T13:52:01Z
format Thesis
id mit-1721.1/8981
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T13:52:01Z
publishDate 2005
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/89812019-04-10T18:34:47Z On the construction of some capacity-approaching coding schemes Chung, Sae-Young, 1967- G. David Forney, Jr. Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. Electrical Engineering and Computer Science. Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2000. Includes bibliographical references (p. 235-242). This thesis proposes two constructive methods of approaching the Shannon limit very closely. Interestingly, these two methods operate in opposite regions, one has a block length of one and the other has a block length approaching infinity. The first approach is based on novel memoryless joint source-channel coding schemes. We first show some examples of sources and channels where no coding is optimal for all values of the signal~to-noise ratio (SNR). When the source bandwidth is greater than the channel bandwidth, joint coding schemes based on space-filling curves and other families of curves are proposed. For uniform sources and modulo channels, our coding scheme based on space-filling curves operates within 1.1 dB of Shannon's rate-distortion bound. For Gaussian sources and additive white Gaussian noise (AWGN) channels, we can achieve within 0.9 dB of the rate-distortion bound. The second scheme is based on low-density parity-check (LDPC) codes. We first demonstrate that we can translate threshold values of an LDPC code between channels accurately using a simple mapping. We develop some models for density evolution from this observation, namely erasure-channel, Gaussian-capacity, and reciprocal channel approximations. The reciprocal-channel approximation, based on dualizing LDPC codes, provides a very accurate model of density evolution for the AWGN channel. We also develop another approximation method, Gaussian approximation, which enables us to visualize infinite-dimensional density evolution and optimization of LDPC codes. We also develop other tools to better understand density evolution. Using these tools, we design some LDPC codes that approach the Shannon limit extremely closely. For multilevel AWGN channels, we design a rate 1/2 code that has a threshold within 0.0063 dB of the Shannon limit of the noisiest level. For binary input AWGN channels, our best rate 1/2 LDPC code has a .threshold within 0.0045 dB of the Shannon limit. Simulation results show that we can achieve within 0.04 dB of the Shannon limit at a bit error rate of 10-6 using a block length of 107 . by Sae-Young Chung. Ph.D. 2005-09-27T19:39:49Z 2005-09-27T19:39:49Z 2000 2000 Thesis http://hdl.handle.net/1721.1/8981 47210805 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 242 p. 13937879 bytes 13937396 bytes application/pdf application/pdf application/pdf Massachusetts Institute of Technology
spellingShingle Electrical Engineering and Computer Science.
Chung, Sae-Young, 1967-
On the construction of some capacity-approaching coding schemes
title On the construction of some capacity-approaching coding schemes
title_full On the construction of some capacity-approaching coding schemes
title_fullStr On the construction of some capacity-approaching coding schemes
title_full_unstemmed On the construction of some capacity-approaching coding schemes
title_short On the construction of some capacity-approaching coding schemes
title_sort on the construction of some capacity approaching coding schemes
topic Electrical Engineering and Computer Science.
url http://hdl.handle.net/1721.1/8981
work_keys_str_mv AT chungsaeyoung1967 ontheconstructionofsomecapacityapproachingcodingschemes