Denitrification in a best management practice bioretention system
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2014.
Main Author: | |
---|---|
Other Authors: | |
Format: | Thesis |
Language: | eng |
Published: |
Massachusetts Institute of Technology
2014
|
Subjects: | |
Online Access: | http://hdl.handle.net/1721.1/90022 |
_version_ | 1811078337565556736 |
---|---|
author | Kernan, Riana Larissa |
author2 | Peter Shanahan and Janelle Thompson. |
author_facet | Peter Shanahan and Janelle Thompson. Kernan, Riana Larissa |
author_sort | Kernan, Riana Larissa |
collection | MIT |
description | Thesis: M. Eng., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2014. |
first_indexed | 2024-09-23T10:57:57Z |
format | Thesis |
id | mit-1721.1/90022 |
institution | Massachusetts Institute of Technology |
language | eng |
last_indexed | 2024-09-23T10:57:57Z |
publishDate | 2014 |
publisher | Massachusetts Institute of Technology |
record_format | dspace |
spelling | mit-1721.1/900222019-04-11T05:43:14Z Denitrification in a best management practice bioretention system Kernan, Riana Larissa Peter Shanahan and Janelle Thompson. Massachusetts Institute of Technology. Department of Civil and Environmental Engineering. Massachusetts Institute of Technology. Department of Civil and Environmental Engineering. Civil and Environmental Engineering. Thesis: M. Eng., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2014. Cataloged from PDF version of thesis. Includes bibliographical references (pages 37-38). This study investigates the occurrence of denitrifying soil bacteria in a bioretention system located in Singapore and containing a saturated anoxic zone intended to facilitate denitrification. Soil samples were collected from six depths within the rain garden, four of which were within the saturated anoxic zone. These samples were analyzed using endpoint PCR, targeting total bacterial 16S rRNA or a denitrification gene (nosZ) in order to determine presence or absence of denitrifying bacteria. Three dilutions were used to produce semiquantitative results for the abundance of denitrifying bacteria in a sample relative to samples from other depths. The highest numbers of nosZ amplicons per gram of soil were observed in the deeper levels of the saturated anoxic zone as well as within the root zone of the rain garden. Subsurface water samples from the saturated anoxic zone were also analyzed for oxidation-reduction potential, dissolved oxygen, and nitrogen and phosphorus species. Concentrations of nitrate and nitrite were below the detection limit for most samples, indicating consumption by denitrifying bacteria and high rates of removal for long detention times. Ammonia and phosphorus concentrations are of potential concern because they appear to increase within the saturated anoxic zone. by Riana Larissa Kernan. M. Eng. 2014-09-19T21:34:58Z 2014-09-19T21:34:58Z 2014 2014 Thesis http://hdl.handle.net/1721.1/90022 890137488 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 42 pages application/pdf Massachusetts Institute of Technology |
spellingShingle | Civil and Environmental Engineering. Kernan, Riana Larissa Denitrification in a best management practice bioretention system |
title | Denitrification in a best management practice bioretention system |
title_full | Denitrification in a best management practice bioretention system |
title_fullStr | Denitrification in a best management practice bioretention system |
title_full_unstemmed | Denitrification in a best management practice bioretention system |
title_short | Denitrification in a best management practice bioretention system |
title_sort | denitrification in a best management practice bioretention system |
topic | Civil and Environmental Engineering. |
url | http://hdl.handle.net/1721.1/90022 |
work_keys_str_mv | AT kernanrianalarissa denitrificationinabestmanagementpracticebioretentionsystem |