Quantum Support Vector Machine for Big Data Classification
Supervised machine learning is the classification of new data based on already classified training examples. In this work, we show that the support vector machine, an optimized binary classifier, can be implemented on a quantum computer, with complexity logarithmic in the size of the vectors and the...
Huvudupphovsmän: | Mohseni, Masoud, Lloyd, Seth, Rebentrost, Frank Patrick |
---|---|
Övriga upphovsmän: | Massachusetts Institute of Technology. Department of Mechanical Engineering |
Materialtyp: | Artikel |
Språk: | English |
Publicerad: |
American Physical Society
2014
|
Länkar: | http://hdl.handle.net/1721.1/90391 https://orcid.org/0000-0002-6728-8163 |
Liknande verk
-
Quantum principal component analysis
av: Lloyd, Seth, et al.
Publicerad: (2015) -
Environment-assisted quantum transport
av: Rebentrost, Patrick, et al.
Publicerad: (2012) -
Quantum gradient descent and Newton’s method for constrained polynomial optimization
av: Rebentrost, Frank Patrick, et al.
Publicerad: (2020) -
Symmetry-enhanced supertransfer of delocalized quantum states
av: Lloyd, Seth, et al.
Publicerad: (2012) -
Quantum Hopfield neural network
av: Rebentrost, Patrick, et al.
Publicerad: (2018)