High efficiency resonant dc/dc converter utilizing a resistance compression network
This paper presents a new topology for a high efficiency dc/dc resonant power converter that utilizes a resistance compression network to provide simultaneous zero voltage switching and near zero current switching across a wide range of input voltage, output voltage and power levels. The resistance...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Institute of Electrical and Electronics Engineers (IEEE)
2014
|
Online Access: | http://hdl.handle.net/1721.1/90543 https://orcid.org/0000-0002-0746-6191 https://orcid.org/0000-0001-5383-5608 |
Summary: | This paper presents a new topology for a high efficiency dc/dc resonant power converter that utilizes a resistance compression network to provide simultaneous zero voltage switching and near zero current switching across a wide range of input voltage, output voltage and power levels. The resistance compression network (RCN) maintains desired current waveforms over a wide range of voltage operating conditions. The use of on/off control in conjunction with narrowband frequency control enables high efficiency to be maintained across a wide range of power levels. The converter implementation provides galvanic isolation and enables large (greater than 1∶10) voltage conversion ratios, making the system suitable for large step-up conversion in applications such as distributed photovoltaic converters. Experimental results from a 200 W prototype operating at 500 kHz show that over 95% efficiency is maintained across an input voltage range of 25 V to 40 V with an output voltage of 400 V. It is also shown that the converter operates very efficiently over a wide output voltage range of 250 V to 400 V, and a wide output power range of 20 W to 200 W. These experimental results demonstrate the effectiveness of the proposed design. |
---|