Design of resistive-input class E resonant rectifiers for variable-power operation
Resonant rectifiers have important application in very-high-frequency power conversion systems, including dc-dc converters, wireless power transfer systems, and energy recovery circuits for radio-frequency systems. In many of these applications, it is desirable for the rectifier to appear as a resis...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Institute of Electrical and Electronics Engineers (IEEE)
2014
|
Online Access: | http://hdl.handle.net/1721.1/90545 https://orcid.org/0000-0002-0746-6191 https://orcid.org/0000-0002-5936-3434 |
Summary: | Resonant rectifiers have important application in very-high-frequency power conversion systems, including dc-dc converters, wireless power transfer systems, and energy recovery circuits for radio-frequency systems. In many of these applications, it is desirable for the rectifier to appear as a resistor at its ac input port. However, for a given dc output voltage, the input impedance of a resonant rectifier varies in magnitude and phase as output power changes. A design method is introduced for realizing single-diode “shunt-loaded” resonant rectifiers, or class E rectifiers, that provide near-resistive input impedance over a wide range of output power levels. The proposed methodology is demonstrated in simulation for a 10:1 power range. |
---|