Design of resistive-input class E resonant rectifiers for variable-power operation

Resonant rectifiers have important application in very-high-frequency power conversion systems, including dc-dc converters, wireless power transfer systems, and energy recovery circuits for radio-frequency systems. In many of these applications, it is desirable for the rectifier to appear as a resis...

Full description

Bibliographic Details
Main Authors: Perreault, David J., Santiago-Gonzalez, Juan Anton, Afridi, Khurram
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Format: Article
Language:en_US
Published: Institute of Electrical and Electronics Engineers (IEEE) 2014
Online Access:http://hdl.handle.net/1721.1/90545
https://orcid.org/0000-0002-0746-6191
https://orcid.org/0000-0002-5936-3434
Description
Summary:Resonant rectifiers have important application in very-high-frequency power conversion systems, including dc-dc converters, wireless power transfer systems, and energy recovery circuits for radio-frequency systems. In many of these applications, it is desirable for the rectifier to appear as a resistor at its ac input port. However, for a given dc output voltage, the input impedance of a resonant rectifier varies in magnitude and phase as output power changes. A design method is introduced for realizing single-diode “shunt-loaded” resonant rectifiers, or class E rectifiers, that provide near-resistive input impedance over a wide range of output power levels. The proposed methodology is demonstrated in simulation for a 10:1 power range.