Predicting pilot intent and aircraft trajectory in uncontrolled airspace

Thesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2014.

Bibliographic Details
Main Author: Lowe, Christopher D., S.M. (Christopher David). Massachusetts Institute of Technology
Other Authors: Jonathon P. How.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2014
Subjects:
Online Access:http://hdl.handle.net/1721.1/90676
_version_ 1826202263360634880
author Lowe, Christopher D., S.M. (Christopher David). Massachusetts Institute of Technology
author2 Jonathon P. How.
author_facet Jonathon P. How.
Lowe, Christopher D., S.M. (Christopher David). Massachusetts Institute of Technology
author_sort Lowe, Christopher D., S.M. (Christopher David). Massachusetts Institute of Technology
collection MIT
description Thesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2014.
first_indexed 2024-09-23T12:04:45Z
format Thesis
id mit-1721.1/90676
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T12:04:45Z
publishDate 2014
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/906762019-04-12T15:20:42Z Predicting pilot intent and aircraft trajectory in uncontrolled airspace Lowe, Christopher D., S.M. (Christopher David). Massachusetts Institute of Technology Jonathon P. How. Massachusetts Institute of Technology. Department of Aeronautics and Astronautics. Massachusetts Institute of Technology. Department of Aeronautics and Astronautics. Aeronautics and Astronautics. Thesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2014. Cataloged from PDF version of thesis. Includes bibliographical references (pages 161-165). The ability to predict the likely trajectory is a key element of safely integrating Unmanned Aerial Systems (UAS) in the National Airspace System (NAS). A particularly challenging environment is in the vicinity of uncontrolled airports, where the route the pilot plans to follow is not available. Existing trajectory prediction methods that rely on propagating the current velocity of the aircraft are not well suited to long-term prediction of pilot behavior in this environment. This thesis proposes a new probabilistic trajectory prediction method within a hierarchical pilot behavior framework that extends the model proposed by Liao et al. [41]. In general trajectories are predicted using only low-level measurements of aircraft state, with no a priori of pilot intent. Trajectories are drawn from a novel navigation model that represents aircraft motion as a Hidden Markov Model in which the state space is composed of possible mode change points. A likelihood function inspired by the approach of Yepes et al. [63] is used to map current aircraft state in continuous space to a high probability discrete sequence of mode change points. An unsupervised learning process is used to identify both the structure and parameters of the navigation model. This approach addresses the weakness of previous Markov model-based approaches that require a fine discretization of the Cartesian state space by representing only features where a branch in aircraft trajectory may occur. Using the proposed likelihood function, learning can be achieved without requiring training data spanning the entire state space. This approach also allows very computationally efficient prediction over a long prediction window to be performed in real time. The resulting long-term trajectory predictions are shown to be far more accurate than can be achieved with other methods that do not take into account intent, particularly in the challenging uncontrolled airport environment. These predictions can be used by UAS to safely plan trajectories through uncontrolled airspace in the NAS. by Christopher D. Lowe. S.M. 2014-10-08T15:22:05Z 2014-10-08T15:22:05Z 2014 2014 Thesis http://hdl.handle.net/1721.1/90676 890465372 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 165 pages application/pdf Massachusetts Institute of Technology
spellingShingle Aeronautics and Astronautics.
Lowe, Christopher D., S.M. (Christopher David). Massachusetts Institute of Technology
Predicting pilot intent and aircraft trajectory in uncontrolled airspace
title Predicting pilot intent and aircraft trajectory in uncontrolled airspace
title_full Predicting pilot intent and aircraft trajectory in uncontrolled airspace
title_fullStr Predicting pilot intent and aircraft trajectory in uncontrolled airspace
title_full_unstemmed Predicting pilot intent and aircraft trajectory in uncontrolled airspace
title_short Predicting pilot intent and aircraft trajectory in uncontrolled airspace
title_sort predicting pilot intent and aircraft trajectory in uncontrolled airspace
topic Aeronautics and Astronautics.
url http://hdl.handle.net/1721.1/90676
work_keys_str_mv AT lowechristopherdsmchristopherdavidmassachusettsinstituteoftechnology predictingpilotintentandaircrafttrajectoryinuncontrolledairspace